Skip to main content
Log in

Spatially varying crack tip stress fields and low energy dislocation substructures

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A correlation between the low energy dislocation substructures formed around the crack tip and the stress field variation is obtained. It has been shown that for small yielding, the dislocation substructure follows the surfaces along which the stress levels remain constant. On the other hand, when the region ahead of the crack tip undergoes large scale yielding, the modification of the spatial variation of the crack tip stress field through the work hardening by plastic deformation becomes important. The low energy configuration of cell structure observed in the plastic zone is predicted to follow the surfaces where the shear stress or the rotational stress component remains constant. These results follow from the variation of cell size, i.e., its inverse relationship to the component of stress.

Résumé

On établit une corrélation entre les sous-configurations de dislocations à basse énergie qui se forment autour de l'extrémité d'une fissure et la variation du champ de contraintes. On a pu montrer que, pour de faibles écoulements plastiques, la structure des dislocations se déploie sur les surfaces le long desquelles le niveau des contraintes demeure constant.

D'autre part, lorsque la région en avant de l'extrémité de la fissure subit un écoulement plastique à grande échelle, la modification qui frappe la variation spaciale du champ de contraintes à l'extrémité de la fissure du fait de l'écrouissage associé à la déformation plastique, devient importante.

On prédit que la configuration cellulaire à basse énergie observée pour la structure dans la zone plastique suit les surfaces correspondant à une composante constante de la contrainte de cisaillement ou de la contrainte rotationnelle.

Ces résultats sont déduits de la variation de la dimension de cellule, à savoir la relation inverse qui la lie à la composante de la contrainte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.G.F. Wilsdorf, Materials Science and Engineering, 59 (1983) 1.

    Google Scholar 

  2. K. Jagannadham, J. Narayan and H.G.F. Wilsdorf, Crystal Properties and Preparation, Trans. Tech. S.A., F.H. Wohlbier (ed.), Aedermannsdorf, Switzerland (1986) 1–54.

    Google Scholar 

  3. K. Jagannadham and H.G.F. Wilsdorf, Materials Science and Engineering 81 (1986) 273.

    Google Scholar 

  4. D. Kuhlmann-Wilsdorf, Metallurgical Transactions 16A (1985) 2091.

  5. R.N. Gardener, T.C. Pollock and H.G.F. Wilsdorf, Materials Science and Engineering 29 (1977) 169.

    Google Scholar 

  6. H.G.F. Wilsdorf, Zeitschrift für Metallkunde 75 (1984) 154.

    Google Scholar 

  7. G.R. Irwin, Handbuch der Physik 79 (1958) 551.

    Google Scholar 

  8. K. Jagannadham and M.J. Marcinkowski, Unified Theory of Fracture, Trans. Tech. SA, Aedermannsdorf, Switzerland (1983) 260, Chapter 5.

    Google Scholar 

  9. J.R. Rice, Fracture, H. Liebowitz (ed.), Academic Press, New York (1968) Chapter 3.

    Google Scholar 

  10. D. Kuhlmann-Wilsdorf, Work Hardening, J.P. Hirth and J. Weertman (eds.), Gordon and Breach, New York (1968) 97.

    Google Scholar 

  11. H.J. McQueen, Journal of Metals (London) 20 (1968) 31.

    Google Scholar 

  12. A.S. Keh and S. Weissmann, Electron Microscopy and Strengthen of Crystals, G. Thomas and J. Washburn (eds.) Interscience, New York, NY (1963) 231–99.

    Google Scholar 

  13. A.W. thompson, Metallurgical Transactions 8A (1977) 833.

  14. M.N. Bassim and R.J. Klassen, Materials Science and Engineering 81 (1986) 163.

    Google Scholar 

  15. K. Jagannadham and Francis C. Laabs, Journal of Materials Science 22 (1987) 818.

    Google Scholar 

  16. D. Kuhlmann-Wilsdorf and J.H.van der Merwe, Materials Science and Engineering 55 (1982) 79.

    Google Scholar 

  17. J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 16 (1968) 13.

    Google Scholar 

  18. J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 16 (1968) 337.

    Google Scholar 

  19. J.R. Rice and G.F. Rosengren, Journal of the Mechanics and Physics of Solids 16 (1968) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagannadham, K., Wilsdorf, H. Spatially varying crack tip stress fields and low energy dislocation substructures. Int J Fract 34, 297–307 (1987). https://doi.org/10.1007/BF00013084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00013084

Keywords

Navigation