Skip to main content
Log in

Structural model of mechanical properties and failure of crystalline polymer solids with fibrous structure

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The failure of an axially strained polymer solid having a fibrous structure is caused by formation, coalescence, and growth of microcracks up to critical size crack, which then propagates catastrophically through the cross-section of the sample. The primary candidates for microcrack formation are the ends of microfibrils where the material connection by tie molecules to the rest of the sample is almost completely interrupted. The opening of microcracks and sliding motion of fibrillar elements ruptures locally the most strained taut tie molecules and, thus, produces radicals detectable by ESR. But, chain rupture is the consequence and not the cause of displacement of the strong fibrillar elements. It also does not substantially affect the load carrying properties of the sample which mainly depend on the lateral autoadhesion of microfibrils and fibrils and on their quasi-viscous resistance to axial displacement. Hence, one has to reject the completely inadequate models trying to base the observed load-elongation curve of such samples on the load carrying properties of those tie molecules which are eventually ruptured upon straining. Some examples of these models are treated explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Zhurkov, Vest. Akad. Nauk SSSR, 11 (1957) 78.

    Google Scholar 

  2. S. N. Zhurkov and S. Abasov, Vysokomol. Soed., 3 (1961) 441.

    Google Scholar 

  3. S. N. Zhurkov, I. I. Novak, B. Ya. Levin, A. V. Savitskii and V. I. Vettegren, Vysokomol. Soed., 7 (1965) 1203.

    Google Scholar 

  4. S. N. Zhurkov, V. A. Marikhin, L. P. Myasnikova and A. I. Slutsker, Vysokomol. Soed., 7 (1965) 1041.

    Google Scholar 

  5. S. N. Zhurkov, E. E. Tomashevskii and V. A. Zakrevskii, Fiz. Tverd. Tela, 3 (1962) 2074.

    Google Scholar 

  6. S. N. Zhurkov, Intern. J. Fract. Mech., 1 (1965) 311.

    Google Scholar 

  7. S. N. Zhurkov and E. E. Tomashevskii, Phys. Basis of Yield and Fracture, Ed. by A. C. Stickland, Inst. Phys. & Phys. Soc. Conf. Ser. 1, London (1966) 200.

  8. S. N. Zhurkov, V. I. Vettegren, I. I. Novak and K. N. Kashincheva, Dokl. Akad Nauk SSSR, 176 (1967) 623.

    Google Scholar 

  9. S. N. Zhurkov, V. I. Vettegren, V. E. Korsukov and I. I. Novak, Fracture, Ed. by P. L. Pratt, Chapman and Hall, London (1968) 545.

    Google Scholar 

  10. S. N. Zhurkov, V. I. Vettegren, V. E. Korsukov and I. I. Novak, Fiz. Tverd. Tela, 11 (1969) 296.

    Google Scholar 

  11. S. N. Zhurkov, A. I. Slutsker and V. S. Kuksenko, Fiz. Tverd. Tela, 11 (1969) 296.

    Google Scholar 

  12. S. N. Zhurkov, V. S. Kuksenko and A. I. Slutsker, Fracture, Ed. by P. L. Pratt, Chapman and Hall, London (1968) 531.

    Google Scholar 

  13. V. A. Zakrevskii, V. S. Kuksenko, A. Ya. Savostin, A. I. Slutsker and E. E. Tomashevskii, Fiz. Tverd. Tela, 11 (1969) 1940.

    Google Scholar 

  14. S. N. Zhurkov, V. A. Zakrevskii, V. E. Korsukov and V. S. Kuksenko, Fiz. Tverd. Tela, 13 (1971) 2004.

    Google Scholar 

  15. B. Ya. Levin, A. V. Savitskii, A. Ya. Savostin and E. E. Tomashevskii, Vysokomol. Soed., 13 (1971) 941.

    Google Scholar 

  16. V. S. Kuksenko, M. A. Gezalov, A. I. Yastrebinskii and V. A. Zakrevskii, J. Polymer Sci., C 38 (1972) 357.

    Google Scholar 

  17. A. Peterlin, J. Polymer Sci., C 9 (1965) 61, C 15 (1966) 427, C 18 (1967) 123.

    Google Scholar 

  18. A. Peterlin, Kolloid Z. & Z. Polymere, 216/217 (1967) 129.

    Google Scholar 

  19. A. Peterlin, J. Mater. Sci., 6 (1971) 490.

    Google Scholar 

  20. A. Peterlin, Text. Res. J., 42 (1972) 20.

    Google Scholar 

  21. W. Glenz, A. Peterlin and W. Wilke, J. Polymer Sci., A2, 9 (1971) 1243.

    Google Scholar 

  22. P. H. Geil, Polymer Single Crystals, J. Wiley & Sons, New York (1963).

    Google Scholar 

  23. G. Meinel and A. Peterlin, J. Polymer Sci., A2, 6 (1968) 587.

    Google Scholar 

  24. G. Meinel, A. Peterlin and K. Sakaoku, Analytical Calorimetry, Ed. by R. S. Porter and J. F. Johnson, Plenum Press, New York (1968) 15.

    Google Scholar 

  25. J. L. Konig, personal communication.

  26. E. W. Fischer, H. Goddar and G. F. Schmidt, Makromol. Chem., 118 (1968) 144.

    Google Scholar 

  27. A. Peterlin and K. Sakaoku, J. Appl. Phys., 38 (1967) 4152.

    Google Scholar 

  28. A. Peterlin and K. Sakaoku, Clean Surfaces, Ed. by G. Goldfinger, M. Dekker, New York (1970) 1.

    Google Scholar 

  29. A. Peterlin, J. Macromol. Sci., B 8 (1973) 83.

    Google Scholar 

  30. A. Peterlin, Materials Sci. Symp. of ASTM, Chicago, Sept. 29/30, 1973 (in press).

  31. A. Peterlin, Pure and Appl. Chem., 39 (1974) 239.

    Google Scholar 

  32. H. G. Olf and A. Peterlin, J. Polymer Sci., B (in press).

  33. G. Raumann and D. W. Saunders, Proc. Phys. Soc. (London), 77 (1961) 1028.

    Google Scholar 

  34. V. B. Gupta and I. M. Ward, J. Macromol. Sci., B 1 (1967) 373, B 2 (1968) 89.

    Google Scholar 

  35. Z. H. Stachurski and I. M. Ward, J. Polymer Sci., A2, 6 (1968) 1083.

    Google Scholar 

  36. Z. H. Stachurski and I. M. Ward, J. Macromol. Sci., B 3 (1969) 445.

    Google Scholar 

  37. H. A. Davies, Fiber Soc. Meeting, Princeton, Nov. 1974.

  38. Y. Tsunekawa, M. Oyane and K. Kojima, J. Polymer Sci., 50 (1961) 35.

    Google Scholar 

  39. T. Hinton and J. G. Rider, J. Appl. Phys., 39 (1968) 4932.

    Google Scholar 

  40. T. Hinton and J. G. Rider, J, Mater. Sci., 6 (1971) 558.

    Google Scholar 

  41. M. Takayanagi, Proc. 4th Intern. Congr. Rheology, Intersci. Publ. New York (1965) Part 1, 161.

    Google Scholar 

  42. A. Peterlin, Intern. J. Fract. Mech., 7 (1971) 496.

    Google Scholar 

  43. A. Peterlin, J. Macromol. Sci., B 6 (1972) 583.

    Google Scholar 

  44. V. A. Marikhin, L. P. Myasnikova, V. A. Sutchkov, M. Sh. Tuchvatullina and I. I. Novak, J. Polymer Sci., C 38 (1972) 195.

    Google Scholar 

  45. O. Ph. Kireenko, V. A. Marikhin, L. P. Myasnikova and V. R. Regel, J. Polymer Sci., C 38 (1972) 363.

    Google Scholar 

  46. A. Peterlin, Proc. 22nd Nobel Symp., Sodergarn, Sweden, June 1972, J. Wiley & Sons, New York, 235.

    Google Scholar 

  47. A. Peterlin, J. Macromol. Sci., B 7 (1973) 705.

    Google Scholar 

  48. A. Peterlin, Macromol. Chem., 8 (1973) 277.

    Google Scholar 

  49. A. Peterlin, J. Polymer Sci., A2, 7 (1969) 1151.

    Google Scholar 

  50. D. K. Roylance, K. L. DeVries and M. L. Williams, Fracture, Ed. by P. L. Pratt, Chapman and Hall, London (1968) 551.

    Google Scholar 

  51. H. H. Kausch Blecken von Schmeling, J. Macromol. Sci., C 4 (1970) 243.

    Google Scholar 

  52. H. H. Kausch Blecken von Schmeling, Intern. J. Fract. Mech., 6 (1970) 301.

    Google Scholar 

  53. H. H. Kausch Blecken von Schmeling and J. Becht, Rheol. Acta, 9 (1970) 137.

    Google Scholar 

  54. J. Becht, K. L. DeVries and H. H. Kausch Blecken von Schmeling, Europ. Polymer J., 7 (1971) 105.

    Google Scholar 

  55. K. L. DeVries, D. K. Roylance and M. L. Williams, Intern. J. Fract. Mech., 7 (1971) 197.

    Google Scholar 

  56. K. L. DeVries, B. A. Lloyd and M. L. Williams, J. Appl. Phys., 42 (1971) 4633.

    Google Scholar 

  57. B. A. Lloyd, K. L. DeVries and M. L. Williams, J. Polymer Sci., A2, 10 (1972) 1415.

    Google Scholar 

  58. B. A. Lloyd, K. L. DeVries and M. L. Williams, Rheol. Acta, 13 (1974) 352.

    Google Scholar 

  59. R. D.Van Veld, G. Morris and H. R. Billica, J. Appl. Polymer Sci., 12 (1968) 2709.

    Google Scholar 

  60. H. R. Billica, Annual Meeting Soc. Rheol., Knoxville, Tenn., Sept. 1972.

  61. G. I. Barenblatt and I. M. Kerstein, Preprints Intern. Conf. Man-Made Fibers, Kalinin, USSR, May 1974, Sect. 1, 28.

  62. B. Crist, personal communication.

  63. A. Tobolsky and H. Eyring, J. Chem. Phys., 11 (1943) 125.

    Google Scholar 

  64. A. V. Amelin, O. F. Pozdnyakov, V. R. Regel and T. P. Sanfirova, Fiz. Tverd. Tela, 12 (1970) 2528.

    Google Scholar 

  65. A. V. Amelin, Yu. A. Glagoleva, A. F. Podolskii, O. F. Pozdnyakov, V. R. Regel and T. P. Sanfirova, Fiz. Tverd. Tela, 13 (1971) 2726.

    Google Scholar 

  66. V. R. Regel, A. I. Slutsker and E. E. Tomashevskii, Kinetic Nature of Strength of Solids, Nauka, Moscow (1974) (Russian).

    Google Scholar 

  67. D. Campbell and A. Peterlin, J. Polymer Sci., B 6 (1968) 481.

    Google Scholar 

  68. J. Becht and H. Fischer, Kolloid Z. & Z. Polymere, 229 (1969) 167.

    Google Scholar 

  69. G. S. P. Verma and A. Peterlin, Kolloid Z. & Z. Polymere, 236 (1970) 111.

    Google Scholar 

  70. G. S. P. Verma and A. Peterlin, J. Macromol. Sci., B 4 (1970) 589.

    Google Scholar 

  71. E. E. Tomashevskii, Fiz. Tverd. Tela, 12 (1970) 3202.

    Google Scholar 

  72. W. Kauzman and H. Eyring, J. Amer. Chem. Soc., 62 (1940) 3113.

    Google Scholar 

  73. A. Peterlin, Frontiers in Materials Sci., Ed. by Ch. Stein, M. Decker, New York (in press).

  74. B. Christ and A. Peterlin, Macromol. Chem., 171 (1973) 211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author wishes to dedicate this paper to Professor S. N. Zhurkov on the occasion of his 70th birthday, as a measure of appreciation for his substantial contribution to the analysis of fracture in polymeric solids.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterlin, A. Structural model of mechanical properties and failure of crystalline polymer solids with fibrous structure. Int J Fract 11, 761–780 (1975). https://doi.org/10.1007/BF00012895

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012895

Keywords

Navigation