Skip to main content
Log in

A generalised solution for the crack surface displacement of mode I two-dimensional part-elliptical crack

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A generalised approximate crack surface displacement solution for the two-dimensional part-elliptical mode I crack was developed. This solution includes the surface crack, corner crack and embedded crack, which is subjected to the arbitrary crack surface pressure. The crack surface displacement is derived from stress intensity factor solution and corresponding crack surface pressure distribution. Comparisons of the solution with accurate solutions showed that rather high accuracy has been achieved with the developed solution for various surface, embedded and corner crack problems. This solution can be used to derive three-dimensional weight functions as long as the stress intensity factor and the corresponding crack surface pressure are available for arbitrary mode I problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Tracey, International Journal of Fracture 9 (1973) RCR 340-RCR343.

    Google Scholar 

  2. I.S. Raju and J.C. NewmanJr., Engineering Fracture Mechanics 11 (1979) 817–829.

    Google Scholar 

  3. J.C. Newman, Jr. and I.S. Raju, NASA TP 1587 (Dec. 1979).

  4. I.S. Raju and J.C. Newman, Jr., ASTM STP 677 (1979) 411–430.

  5. T.E. Kullgren, F.W. Smith and G.P. Ganong, ASME Journal of Engineering Materials and Technology 100 (1978) 144–149.

    Google Scholar 

  6. T. Nishioka and S.N. Atluri, Engineering Fracture Mechanics 17 (1983) 247–268.

    Google Scholar 

  7. F.W. Smith, A.F. Emery and A.S. Kobayashi, Journal of Applied Mechanics, Transactions of ASME 89 (1967) 953–959.

    Google Scholar 

  8. A.S. Kobayashi, in Proceedings, Second International Conference on Mechanical Behaviour of Materials (1976) 1073–1077.

  9. R.C. Shah in Mechanics of Crack Growth, ASTM STP 590 (1976) 429–459.

  10. J. Heliot, R.C. Labbens and A. Pellissier-Tanon, in ASTM STP 677, C.W. Smith (ed.) (1979) 341–364.

  11. M. Isida and H. Noguchi, Engineering Fracture Mechanics 20 (1984) 387–408.

    Google Scholar 

  12. H.G. Bueckner, ZAMM 50,9 (1970) 529–546.

    Google Scholar 

  13. J.R. Rice, International Journal of Solids and Structure 8 (1972) 751–758.

    Google Scholar 

  14. X.R. Wu and J. Carlsson, Journal of Mechanics and Physics of Solids 31 6 (1983) 485–497.

    Google Scholar 

  15. D.P. Rooke and D.J. Cartwright, Compendium of Stress Intensity Factors, Her Majesty's Stationary Office, London (1976).

    Google Scholar 

  16. H. Tada, P. Paris and G. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, Pennsylvania (1973).

    Google Scholar 

  17. Y. Murakami et al., Stress Intensity Factors Handbook, Pergamon Press (1987).

  18. C. Mattheck, K. Munz and H. Stamm, Engineering Fracture Mechanics 18,3 (1983) 633–641.

    Google Scholar 

  19. H.J. Petroski and J.D. Achenbach, Engineering Fracture Mechanics 10 (1978) 257–266.

    Google Scholar 

  20. C. Mattheck, P. Morawietz and D. Munz, International Journal of Fracture 23 (1983) 201–212.

    Google Scholar 

  21. V.A. Vainshtok and I.V. Varfolomevev, International Journal of Fracture 35 (1987) 175–186.

    Google Scholar 

  22. T. Fett, C. Mattheck and D. Munz, Engineering Fracture Mechanics 27,6 (1987) 175–186.

    Google Scholar 

  23. T. Fett, International Journal of Fracture 36 (1988) 55–69.

    Google Scholar 

  24. T. Fett, Engineering Fracture Mechanics 32,5 (1989) 731–737.

    Google Scholar 

  25. G.S. Wang and A.F. Blom, Weight functions and stress intensity factors for mode I cracks in arbitrary 2D geometries under general crack surface loading, FFA TN 1990–17, The Aeronautical Research Institute of Sweden, Bromma, Sweden (1990).

    Google Scholar 

  26. A.E. Green and I.N. Sneddon, Proceedings, Cambridge Philosophical Society 47 (1950) 159–164.

    Google Scholar 

  27. G.S. Wang, Engineering Fracture Mechanics 41, 5 (1992) 659–684.

    Google Scholar 

  28. STRIPE, for self-adaptive FE-analysis of three-dimensional structures, User Manual Version 1.0 Preliminary, Structure Department, The Aeronautical Research Institute of Sweden (1988).

  29. B. Andersson, U. Falk and A.I. Gustavsson, An introduction to the self-adaptive FE-program STRIPE, FFAP-H-974, The Aeronautical Research Institute of Sweden (1988).

  30. J.C. Newman, Jr. and I.S. Raju, in Fracture Mechanics: Fourteenth Symposium-Volume 1; Theory and Analysis, ASTM STP 791 (1983) I-238–I-265.

  31. J.C. NewmanJr. and I.S. Raju, Engineering Fracture Mechanics 15,1–2 (1981) 185–192.

    Google Scholar 

  32. V.A. Vainshtok and I.V. Varfolomeyev, International Journal of Fracture 47 (1990) 1–24.

    Google Scholar 

  33. T. Fett, C. Mattheck and D. Munz, International Journal of Fracture 40 (1989) 307–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G.S. A generalised solution for the crack surface displacement of mode I two-dimensional part-elliptical crack. Int J Fract 59, 161–187 (1993). https://doi.org/10.1007/BF00012389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012389

Keywords

Navigation