, Volume 341, Issue 1, pp 27–36 | Cite as

Autotrophic carbon sources for heterotrophic bacterioplankton in a floodplain lake of central Amazon

  • Andrea Viviana Waichman


The relative contribution of autotrophic carbon sources (aquatic macrophytes, flooded forest, phytoplankton) for heterotrophic bacterioplankton was evaluated in a floodplain lake of the Central Amazon. Stable carbon isotopes (δ13C) were used as tracers. Values of δ13C of different autotrophic sources were compared to those of dissolved organic carbon (DOC) and those of bacterially produced CO2.

The percentage of carbon derived from C4 macrophytes for bacterially produced CO2 was the highest, on average 89%. The average δ13C value of CO2 from bacterial respiration was −18.5 ± 3.3‰. Considering a fractionation of CO2 of 3‰ by bacterial respiration, δ13C value was −15.5‰, near C4 macrophyte δ13C value (−13.1‰).

The average value of total DOC δ13C was −26.8 ± 2.4‰. The percentage of C4 macrophytes carbon for total DOC was on average 17%. Considering that bacteria consume mainly carbon from macrophytes, the dominance of C3 plants for total DOC probably reflects a faster consumption of the former source, rather than a major contribution of the latter source.

Heterotrophic bacterioplankton in the floodplain may be an important link in the aquatic food web, transferring the carbon from C4 macrophytes to the consumers.

Key words

bacteria macrophytes floodplain lakes Amazon stable carbon isotopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araujo-Lima, C. A. R. M., B. R. Forsberg, R. Victoria & L. Martinelli 1986. Energy Sources for detritivorous fishes in the Amazon. Science 34: 1256–1258.Google Scholar
  2. Araujo-Lima, C. A. R. M. & E. Hardy. 1987. Aspectos biológicos de peixes amazônicos. VIII. A alimentação dos alevinos do laraqui, Semaprochilodus insignis. Amazoniana 5: 127–136.Google Scholar
  3. Azam, F., T. Fenchel, J. Field, J. S. Gray A, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.Google Scholar
  4. Bayley. P. B., 1983. Central Amazon fish populations: biomass, production and some dynamics characteristics. Ph. D. Thesis, Dalhousie Univ. Nova Scotia, Canada, 330 pp.Google Scholar
  5. Benner, R., S. Opsahl, G. Chin-Leo, J. E. Richey & B. R. Forsberg, 1995. Bacterial carbon metabolism in the Amazon River system. Limnol. Oceanogr. 40: 1262–1270.Google Scholar
  6. Blair, N., A. Leu, E. Muñoz, J. Olse, E. Kwong & D. Des Marais, 1985. Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl. envir. Microbiol. 50: 996–1001.Google Scholar
  7. Coffin, R. B., D. J. Velinsky, R. Devereux, W. A. Price & L. A. Cifuentes, 1990. Stable Carbon Isotope analysis of nucleic acids to trace sources of dissolved substrates used by estuarine bacteria. Appl. Envir. Microbiol. 56: 2012–2020.Google Scholar
  8. Coffin. R. B., B. Fry, B. J. Peterson & R. T. Wright, 1989. Carbon isotope composition of estuarine bacteria. Limnol. Oceanogr. 34: 1305–1310.Google Scholar
  9. De Niro, M. J. & S. Epstein, 1978. Influence of diet on distribution of carbon in animals. Geochim. Cosmochim. Acta 42: 495–506.Google Scholar
  10. Ducklow, H. W., D. A. Purdie, P. J. L. B. Williams & J. M. Davies, 1986. Bacterioplankton: a sink for carbon in a coastal plankton community. Science 232: 865–867.Google Scholar
  11. Fenchel, T., 1988. Marine plankton food chains. Annu. Rev. Ecol. Syst. 19: 19–38.Google Scholar
  12. Fenchel, T. M. & B. B. Jorgensen, 1977. Detritus food chains of aquatic ecosystems, the role of bacteria. In Alexander, M. (ed.), Advances in microbial ecology. Plenum, New York: 1–58.Google Scholar
  13. Fernandez, J. M., 1993. Fontes autotróficas de energia em juvenis de jaraqui Semaprochilodus insignis (Schomburgk, 1841) e curimatã, Prochilodus nigricans (Agassiz, 1829) (Pisces:Prochilodontidade) da Amazônia central. M.Sc. Thesis, Instituto Nacional de Pequisas da Amazônia/Universidade Federal do Amazonas, Manaus, 58 pp.Google Scholar
  14. Forsberg, B. R., C. A. R. M. Araujo-Lima, L. A. Martinelli, R. L. Victoria & J. A. Bonassi, 1993. Autotrophic carbon sources for fish of the central Amazon. Ecology 74: 643–652.Google Scholar
  15. Furhman, J. A., 1992. Bacterioplankton roles in cycling of organic matter: the microbial food web. In Falkowsky, P. G. & A. D. Woodhead (eds), Primary productivity and biogeochemical cycles in the sea. Plenum Press. New York: 361–383.Google Scholar
  16. Fry, B. & E. B. Sherr, 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Cont. Mar. Sci. 7: 13–47.Google Scholar
  17. Hedges, J. I., G. L. Cowie, J. E. Richey, P. D. Quay, R. Benner, M. Strom & B. R. Forsberg, 1994. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates an amino acids. Limnol. Oceanogr. 39: 743–761.Google Scholar
  18. Hessen. D. O., 1985. The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microbiol. Ecol. 31: 215–223.Google Scholar
  19. Hessen, D. O., 1992. Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. Hydrobiologia 229: 115–123.Google Scholar
  20. Hobbie. J. E., 1992. Microbial control of dissolved organic carbon in lakes: research for the future. Hydrobiologia 229: 169–180.Google Scholar
  21. Howard-Williams, C. & W. J. Junk, 1976. The decomposition of aquatic macrophytes in the floating meadows of a central Amazonian várzea lake. Biogeographica: 115–123.Google Scholar
  22. Howard-Williams, C. & W. J. Junk, 1977. The chemical composition of central Amazonian aquatic macrophytes with special reference to their role in the ecosystem. Arch. Hydrobiol. 79: 446–464.Google Scholar
  23. Junk. W. J., 1970. Investigations on the ecology and production biology of the ‘floating meadows’ (Paspalo-echinoclhoetum) on the middle Amazon. I. The floating vegetation and its ecology. Amazoniana: 449–495.Google Scholar
  24. Junk, W. J., 1973. Investigations on the ecology and production biology of the ‘floating meadows’ (Paspalo-echinoclhoetum) on the middle Amazon. II. The aquatic fauna in the root zone of the floating vegetation. Amazoniana 4: 9–102.Google Scholar
  25. Junk, W. J., 1985. The Amazon floodplain — a sink or source for organic carbon? Mitt. Geol. Paläont. Inst. Univ. Hamburg. SCOPE/UNEP Sonderbd. 58: 267–283.Google Scholar
  26. Junk. W. J. & C. Howard-Williams, 1984. Ecology of aquatic macrophytes in Amazonia. In Sioli, H. (ed.), The Amazon, limnology and landscape ecology of might tropical river and its basin. Junk Publisher, The Hague, 296–293.Google Scholar
  27. Junk. W. J. & K. Furch, 1991. Nutrient dynamics in Amazonian floodplain: decomposition herbaceous plants in aquatic and terrestrial environments. Verh. int. Ver. Limnol. 24: 2080–2084.Google Scholar
  28. Martinelli. L. A., 1986 Composição química e isótopica (δ13C) de sedimentos de várzea e suas interações com alguns rios da bacia Amazônica. M.Sc. Thesis, Universidade de São Paulo, 214 pp.Google Scholar
  29. McManus, G. B. & J. A. Furhman, 1988. Contral of marine bacterio-plankton populations: Measurement and significance of grazing. Hydrobiologia 159: 51–62.Google Scholar
  30. Melack. J. M. & T. R. Fisher, 1991. Comparative limnology of tropical lakes with an emphasis on the central Amazon. Acta Limnol. Brasil. 3: 1–46.Google Scholar
  31. Melack, J. M. & T. R. Fisher. 1983. Diel oxygen variations and their ecological implications in Amazon floodplain lakes. Arch. Hydrobiol. 98: 422–442.Google Scholar
  32. Moran, M. A. & R. E. Hodson, 1990. Bacterial production in humic and nonhumic components of dissolved organic carbon. Limnol. Oceanogr. 35: 1744–1756.Google Scholar
  33. Padovani, C. R., 1992. Determinação das fontes autotróficas de carbono para camarões em um lago de várzea da Arnazônia Central utilizando isótopos estáveis de Carbono. M.Sc. Thesis Instituto Nacional de Pesquisas da Amazônia/Universidade Federal do Amazonas, Manaus, 72 pp.Google Scholar
  34. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18: 293–320.Google Scholar
  35. Pomeroy, L. R., 1974. The ocean's food web: a changing paradigm. BioScience 24: 499–504.Google Scholar
  36. Pomeroy, L. R. & W. J. Wiebe, 1988. Energetics of microbial food webs. Hydrobiologia 159: 7–18.Google Scholar
  37. Quay. P., D. O. Wilbur, J. E. Richey, J. I. Hedges, A. H. Devol & R. Victoria, 1992. Carbon cycling in the Amazon: implication from the 13C composition of particles and solutes. Limnol. Oceanogr. 37: 857–871.Google Scholar
  38. Quay. P., D. O. Wilbur, J. E. Richey, H. Devol, R. Benner & B. R. Forsberg, 1995. The 18O:16O of dissolved oxygen in rivers and lakes in the Amazon Basin: Determining the ratio of respiration to photosynthesis rates in freshwaters. Limnol. Oceanogr. 40: 718–729.Google Scholar
  39. Rai, H., 1979. Microbiology of Central Amazon lakes. Amazoniana 6: 583–599.Google Scholar
  40. Rai, H. & G. Hill, 1980. Classification of central Amazon lakes on the basis of their microbiological and physico-chemical characteristics. Hydrobiologia: 85–99.Google Scholar
  41. Rai, H. & G. Hill. 1984. Microbiology of amazonian waters. In Sioli, H. (ed.) The Amazon, limnology and landscape ecology of might tropical river and its basin. Dr W. Junk Publishers, The Hague, 413–444.Google Scholar
  42. Richey. J. E., A. H. Devol, S. C. Wofsy, R. L. Vitoria & M. N. Goes-Ribeiro, 1988. Biogenic gases and the oxidation and reduction of carbon in Amazon river and floodplain waters. Limnol. Oceanogr. 33: 551–561.Google Scholar
  43. Richey. J. E., A. H. Devol, P. D. Quay, R. L. Vitoria, L. A. Martinelli B. R. Forsberg, 1990. Biogeochemistry of carbon in the Amazon River. Linmol. Oceanogr. 35: 352–371.Google Scholar
  44. Salonen, K., P. Kankaala, T. Tulonen, T. Hammat, M. James, T-R. Metsälä & L. Arvola, 1992. Planktonic food chains of highly humic lake. I. A mesocosm experiment during the spring primary production maximum Hydrobiologia 2291: 25–142.Google Scholar
  45. Sherr, E. B., B. F. Sherr & L. J. Albright. 1987. Bacteria: Link or sink? Science 235: 88–89.Google Scholar
  46. Starkweather, P. L., 1980. Aspects of the feeding behavior and trophic ecology of suspension feeding rotifers. Hydrobiologia 73: 891–908.Google Scholar
  47. Tranvik, L., 1992. Allochtonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229: 107–114.Google Scholar
  48. Tranvik, L. & M. G. Hölfe, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. envir. Microbiol. 53: 482–488.Google Scholar
  49. Turner, J. T. & P. A. Tester, 1992. Zooplankton feeding ecology: bacterivory by metazoan microzooplankton. J. exp. mar. Biol. Ecol. 160: 149–167.Google Scholar
  50. Waichman. A. V., 1985. Fontes autotróficas de carbono para bactérias em um lago de várzea da Amazônia Central. M.Sc. Thesis, Instituto Nacional de Pesquisas da Amazônia/Universidade Federal do Amazonas, Manaus, 75 pp.Google Scholar
  51. Wilkinson, L., 1990. SYSTAT: The system for statistics. Systat, Inc Evanston, IL.Google Scholar
  52. Wissmar, R. C., J. E. Richey & R. F. Stallard, 1981. Plankton metabolism and carbon processes in the Amazon River, its tributaries, and floodplain waters, Peru-Brazil. May–June 1977. Ecology 62: 1622–1633.Google Scholar
  53. Wylie, J. L. & D. J. Currie, 1991. The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36: 708–728.Google Scholar
  54. Zar. J. H., 1984. Bioestatistical analysis. Prentice Hall Inc., Englewood Cliffs, New Jersey, 718 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Andrea Viviana Waichman
    • 1
  1. 1.Faculdade de Ciências Agrárias, Departamento de Ciências PesqueirasCampus UniversitárioManaus-AmazonasBrazil

Personalised recommendations