Skip to main content
Log in

Altitudinal changes in humus form dynamics in a spruce forest at the montane level

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

An altitudinal transect was studied at the montane level in a spruce forest, in order to describe changes in humus form dynamics. Whatever the elevation, the periodicity of humus form changes is copied on forest dynamics. Spruce regeneration is restricted both in space and time to favourable micro-site conditions accompanying tree fall gaps. One of these conditions is a shift from moder to mull humus form. As a result, this forest ecosystem shows a space-time mosaic pattern. The recovery of mull humus form takes more time as elevation increases and thus the ratio mull:moder progressively decreases. Simultaneously, burrowing earthworms become scarce. Nevertheless mull humus form does not change basically at increased elevation. On the other hand, moder has little organic matter at the lower montane level. At the mid montane level, accumulation of holorganic faeces into OH horizon is maximum. A mor-moder (few faunal traces) is observed during tree growth phase at the upper montane level. Lack of nutrient availability was hypothesized to explain the observed shift from mull to moder or mor-moder during the phase of intense tree growth. An increased independancy between the building of a moder humus profile and the actual accumulation of organic matter was the main change occurring with elevation. The transition to the subalpine level may thus be defined as the highest elevation up to which the forest ecosystem is able to reverse the mor-building process produced by tree growth. The discoupling between primary producers, plant debris accumulation and decomposers observed in the subalpine spruce forest leads to a breaking point in the carrying capability of humus for spruce seedlings. At high elevation spruce seedlings are mainly observed on rotten wood.

The influence of humus form dynamics upon forest sustainability was discussed. The lack of humus biological activity at higher elevation was found to be a reason for the weakness of the forest ecosystem faced to the bilberry heath. Forest sustainability depends both on mull and moder. It was observed that moder failed to recover after mull along the forest cycle and turned to mor in harsh climate conditions. Consequences of management practices on the issue of competition between forest and heath were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André J, Gensac P, Pellissier F and Trosset L 1987 Régénération des peuplements d'épicéa en altitude: recherches préliminaires sur le rôle de l'allélopathie et de la mycorhization dans les premiers stades du développement. Rev. Ecol. Biol. Sol. 24, 301–310.

    Google Scholar 

  • André J and Gensac P 1989 Vaccinium myrtillus et la régénération dans les pessières d'altitude: cas de deux stations dans les Alpes françaises septentrionales. Acta Biol. Montana 9, 133–142.

    Google Scholar 

  • André J, Gensac P and Gautier M 1990 La régénération dans la pessière à myrtille. Description préliminaire de deux stations dans les Alpes septentrionales internes. Bull. Ecol. 21, 51–61.

    Google Scholar 

  • Arpin P 1991 Mise au point sur la caractérisation biologique des humus forestiers par l'étude des Nématodes Mononchida. Rev. Ecol. Biol. Sol 28, 133–144.

    Google Scholar 

  • Association Française pour l'Etude du Sol 1992 Référentiel Pédologique. Principaux sols d'Europe. INRA, Paris, France. 222p.

    Google Scholar 

  • Bal L 1970 Morphological investigation in two moder-humus profiles and the role of the soil fauna in their genesis. Geoderma 4, 5–36.

    Google Scholar 

  • Bal L 1982 Zoological Ripening of Soils. PUDOC, Wageningen, The Netherlands. 365p.

    Google Scholar 

  • Beniamino F, Ponge J F and Arpin P 1991 Soil acidification under the crown of oak trees. I. Spatial distribution. For. Ecol. Manage. 40, 221–232.

    Google Scholar 

  • Bernier N and Ponge J F 1993 Dynamique et stabilité des humus au cours du cycle sylvogénétique d'une pessière d'altitude. C. R. Séances Acad. Sci. Paris, Sci. Vie 316, 647–651.

    Google Scholar 

  • Bernier N and Ponge J F 1994 Humus form dynamics during the sylvogenetic cycle in a mountain spruce forest. Soil Biol. Biochem. 26, 183–220.

    Google Scholar 

  • Bernier N, Ponge J F and André J 1993 Comparative study of soil organic layers in two bilberry-spruce forest stands (Vaccinio-Piceetea). Relation to forest dynamics. Geoderma 59, 89–108.

    Google Scholar 

  • Blanchart E 1992 Restoration by earthworms (Megascolecidae) of the macroaggregate structure of a destructured savanna soil under field conditions. Soil Biol. Biochem. 24, 1587–1594.

    Google Scholar 

  • Blandin P, Barbault R and Lecordier C 1976 Reflexions sur la notion d'écosystème: le concept de stratégie cénotique. Bull. Ecol 7, 391–410.

    Google Scholar 

  • Bornebusch C H 1930 The fauna of forest soil. Forstl. Forsøgsvaes. 11, 1–158

    Google Scholar 

  • Bouché 1972 Lombriciens de France. Ecologie et Systématique. INRA, Paris, France. 671p.

    Google Scholar 

  • Bouché M B and Gardner R H 1984 Earthworm functions. VIII. Population estimation techniques. Pev. Ecol. Biol. Sol 21, 37–63.

    Google Scholar 

  • Brady N C 1984 The Nature and Properties of Soils. 9th Edition, Macmillan, New York, USA. 750p.

    Google Scholar 

  • Cancela Da Fonseca J P 1977 Quelques remarques à propos de la résilience et de la stabilité dans les écosystèmes. Rev. Quest. Sci. 148, 423–444.

    Google Scholar 

  • Christy E J and Mack R N 1984 Variation in demography of juvenile Tsuga heterophylla across the substratum mosaic. J. Ecol. 72, 75–91.

    Google Scholar 

  • Crocker R L and Dickson B A 1957 Soil development on the recessional moraines of the Herbert and Mendenhall glaciers, southeastern Alaska. J. Ecol. 45, 169–185.

    Google Scholar 

  • Daniel T W and Schmidt J 1972 Lethal and nonlethal effects of the organic horizons of forested soils on the germination of seeds from several associated conifer species of the Rocky Mountains. Can. J. For. Res. 2, 179–184.

    Google Scholar 

  • David J F, Ponge J F and Delecour F 1993 The saprophagous macrofauna of different types of humus in beech forests of the Ardenne (Belgium). Pedobiologia 37, 49–56.

    Google Scholar 

  • Delecour F 1978 Facteurs édaphiques et productivité forestière. Pédologie 28, 271–184.

    Google Scholar 

  • Dimbleby G W 1952 Soil regeneration on the north-east Yorkshire moors. J. Ecol. 40, 331–341.

    Google Scholar 

  • Dimbleby G W and Gill J M 1955 The occurrence of podzols under deciduous woodland in the New Forest. Forestry 28, 95–106.

    Google Scholar 

  • Donahue R L 1940 Forest-site quality studies in the Adirondacks. I. Tree growth as related to soil morphology. Cornell University Agricultural Experiment Station Memoir 229.

  • Duchaufour P 1968 L'évolution des sols. Essai sur la Dynamique des Profils. Masson, Paris, France. 94p.

    Google Scholar 

  • Duchaufour P 1994 Pédologie. Masson, Paris, France. 324p.

    Google Scholar 

  • Esau K 1965 Plant Anatomy. Wiley, New York, USA. 767p.

    Google Scholar 

  • Fisher R T 1928 Soil changes and silviculture on the Harvard Forest. Ecology 9, 6–9.

    Google Scholar 

  • Gallet C 1994 Allelopathic potential in bilberry-spruce forests: influence of phenolic compounds on spruce seedlings. J. Chem. Ecol. 20, 1009–1023.

    Google Scholar 

  • Garay I 1989 Relations entre l'hétérogénéité des Litières et l'Organisation des Peuplements d'Arthropodes Edaphiques. Ecole Normale Superieure, Laboratoire de Zoologie, Paris, France. 192p.

    Google Scholar 

  • Gensac P 1970 Les pessières de Tarentaise comparées aux autres pessières alpestres. Veröff. Geobot. Inst. Eidg. Tech. Hochsch. Stift. Rübel Zürich 43, 104–139.

    Google Scholar 

  • Gensac P 1988 Types de pessière et régénération en moyenne Tarentaise (Savoie). Rev. For. Fr. 40, 285–296.

    Google Scholar 

  • Gensac P 1990 Régénération en altitude de l'épicéa (Picea abies (L.) Karst) sur les souches dans les Alpes françaises. Ann. Sci. For. 47, 173–182.

    Google Scholar 

  • Gourbière F 1983 Pourriture blanche de la litière d'Abies alba Mill. II. Répartition spatio-temporelle et activité annuelle des Basidiomycètes du genre Collybia. Rev. Ecol. Biol. Soil 20, 461–474.

    Google Scholar 

  • Gourbière F 1988 Structure spatio-temporelle de la mycoflore des premiers stades de décomposition des aiguilles d'Abies alba. Soil Biol. Biochem. 20, 453–458.

    Google Scholar 

  • Green R N, Trowbridge R L and Klinka K 1993 Towards a Taxonomic Classification of Humus Forms. For. Sci. Monogr. 29. 49p.

  • Hamilton W E and Sillman D Y 1989 Influence of earthworm middens on the distribution of soil microarthropods. Biol. Fert. Soils 8, 279–284.

    Google Scholar 

  • Jongerius A 1963 Optic-volumetric measurements on some humus forms. In Soil Organisms. Eds. J Doeksen and J Van DerDrift. pp 137–148. North-Holland Publishing Company, Amsterdam, The Netherlands.

    Google Scholar 

  • Kendrick W B and Burges A 1962 Biological aspects of the decay of Pinus sylvestris leaf litter. Nova Hedwigia 4, 313–344 + 14 inlet plates.

    Google Scholar 

  • Knapp A K and Smith W K 1982 Factors influencing understory seedling establishment of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) in southeast Wyoming. Can. J. Bot. 60, 2753–2761.

    Google Scholar 

  • Lachaussée E 1947 La régénération de l'épicéa en haute montagne. Rev. Eaux For. 85, 281–302.

    Google Scholar 

  • Lavelle P, Blanchart E, Martin A and Martin S 1993 A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25, 130–150,

    Google Scholar 

  • Lavelle P and Martin A 1992 Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics. Soil Biol. Biochem. 24, 1491–1498.

    Google Scholar 

  • Lions J C and Gourbière F 1988 Populations adultes et immatures d'Adoristes ovatus (Acarien, Oribate) dans les aiguilles de la litiére d'Abies alba. Rev. Ecol. Biol. Sol 25, 343–352.

    Google Scholar 

  • Mayer H 1976 Gebirgswaldbau. Schutzwaldpflege. Ein waldbaulicher Beitrag zur Landschaftsökologie und zum Umweltschutz. Gustav Fischer Verlag, Stuttgart, Germany. 436p.

    Google Scholar 

  • McKenzie B M and Dexter A R 1993 Size and orientation of burrows made by the earthworms Aporrectodea rosea and A. caliginosa. Geoderma 56, 233–241.

    Google Scholar 

  • Meyer F H and Göttsche D 1971 Distribution of root tips and tender roots of beech. In Ecological studies, analysis and synthesis, Vol. 2. Ed. HEllenberg. pp 48–52. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Miles J 1979 Vegetation dynamics. Chapman and Hall, London, England. 80p.

    Google Scholar 

  • Miles J 1981 Effects of trees on soils. In Forest and Woodland Ecology. Eds. F T Last and A Gardiner. pp 85–88. Institute of Terrestrial Ecology, Merlewood, UK.

    Google Scholar 

  • Miles J 1985 Soil in the ecosystem. In Plants, Microbes and Animals. Ecological Interactions in Soil. Eds. A H Fitter et al. pp 407–427. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Miles J and Young W F 1980 The effects on heathland and moorland soils in Scotland and northern England following colonization by birch (Betula spp.). Bull. Ecol. 11, 233–242.

    Google Scholar 

  • Miller H G, Miller J D and Cooper J M 1981 Optimum foliar nitrogen concentration in pine and its change with stand age. Can. J. For. Res. 11, 563–572.

    Google Scholar 

  • Murphy P W 1955 Ecology of the fauna of forest soils. In Soil Zoology. Ed. D K McE Kevan. pp 99–124. Butterworths Scientific Publications London, England.

    Google Scholar 

  • Oldeman R A A 1990 Forests: elements of silvology. Springer Verlag, Berlin, Germany. 624p.

    Google Scholar 

  • Page G 1974 Effects of forest cover on the properties of some New-foundland forest soils. Canadian Forestry Service, Department of the Environment, Publication N° 1332, Ottawa. 32p.

  • Piearce T G 1972 The calcium relations of selected Lumbricidae. J. Anim. Ecol. 41, 167–188.

    Google Scholar 

  • Ponge J F 1984 Etude écologique d'un humus forestier par l'observation d'un petit volume, premiers résultats. I. La couche L1 d'un moder sous pin sylvestre. Rev. Ecol. Biol. Sol 21, 161–187.

    Google Scholar 

  • Ponge J F 1991 Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter. Plant and Soil 138, 99–113.

    Google Scholar 

  • Ponge J F, André J, Bernier N and Gallet C 1994 La régénération naturelle: connaissances actuelles. Le cas de l'épicéa en forêt de Macot (Savoie), Rev. For. Fr. 46, 25–45.

    Google Scholar 

  • Ponge J F and Delhaye L 1995 The heterogeneity of humus profiles and earthworm communities in a virgin beech forest. Biol. Fert. Soils 20, 24–32.

    Google Scholar 

  • Raw F 1959 Estimating earthworm populations by using formalin. Nature 184, 1661–1662.

    Google Scholar 

  • Raw F 1962 Studies of earthworm populations in orchards. I. Leaf burial in apple orchards. Ann. Appl. Biol. 50, 389–404.

    Google Scholar 

  • Robinson C H, Piearce T G and Ineson P 1991 Burrowing and soil consumption by earthworms in limed and unlimed soils from Picea sitchensis plantations. Pedobiologia 35, 360–367.

    Google Scholar 

  • Romell L G 1932 Mull and duff as biotic equilibria. Soil Sci. 34, 161–188.

    Google Scholar 

  • Saitô T 1966 Sequential pattern of decomposition of beech litter with special reference to microbial succession. Ecol. Rev. 16, 245–254.

    Google Scholar 

  • Sartz R S and Huttinger W D 1950 Some factors affecting humus development in the Northeast. J. For. 48, 341–344.

    Google Scholar 

  • Scheu S 1992 Changes in the lumbricid coenosis during secondary succession from a wheat field to a beechwood on limestone. Soil Biol. Biochem. 24, 1641–1646.

    Google Scholar 

  • Springett J A 1963 The distribution of three species of Enchytraeidae in different soils. In Soil Organisms. Eds. J Doeksen and J Van DerDrift. pp 414–419. North-Holland Publishing Company, Amsterdam, The Netherlands.

    Google Scholar 

  • Tomlin A D, McCabe D and Protz R 1992 Species composition and seasonal variation of earthworms and their effect on soil properties in southern Ontario, Canada. Soil Biol. Biochem. 24, 1451–1457.

    Google Scholar 

  • Toutain F 1987 Activité biologique des sols, modalités et lithodépendance. Biol. Fert. Soils 3, 31–38.

    Google Scholar 

  • Ulrich B 1984 Ion cycle and forest ecosystem stability. In State and Change of Forest Ecosystems. Indicators in Current Research. Ed. G I Ågren. pp 207–233. Swedish University of Agricultural Sciences Department of Ecology and Environmental Research, Uppsala, Sweden. Report N° 13.

    Google Scholar 

  • Watt A S 1947 Pattern and process in the plant community. J Ecol. 35, 1–22.

    Google Scholar 

  • Weissen F 1979 La régénération naturelle de l'épicéa en Ardenne. Bull. Soc. R. For. Belg. 86, 115–123.

    Google Scholar 

  • Zachariae G 1962 Was leisten Collembolen für den Waldhumus? In Soil Organisms. Eds. J Doeksen and J Van DerDrift. pp 109–124. North-Holland Publishing Company, Amsterdam, The Netherlands.

    Google Scholar 

  • Zinke P J 1962 The pattern of influence of individual forest trees on soil properties. Ecology 43, 130–133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernier, N. Altitudinal changes in humus form dynamics in a spruce forest at the montane level. Plant Soil 178, 1–28 (1996). https://doi.org/10.1007/BF00011159

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00011159

Key words

Navigation