Advertisement

Hydrobiologia

, Volume 234, Issue 2, pp 79–85 | Cite as

Allozymic variation in tubificid oligochaetes from the Laurentian Great Lakes

  • Lawrence J. Weider
Article

Abstract

Aquatic oligochaetes are an important component of the benthos in many freshwater habitats. Yet, virtually nothing is known about the population genetics of this group. Electrophoretic surveys of allozymic variation of selected members of the Family Tubificidae were conducted at six locations in the Laurentian Great Lakes of North America. Branchiura sowerbyi was the dominant member of the oligochaete fauna at two sites, and was found to be monomorphic at all enzyme loci that were examined. In contrast, members of the genus Limnodrilus, which included L. cervix, L. claparedianus, L. hoffmeisteri, L. maumeensis, and L. udekemianus showed considerable allozymic variation at several enzyme loci. L. udekemianus exhibited tri- and tetra-allelic heterozygous electromorph banding patterns at the monomeric Pgm locus, along with ‘unbalanced’ heterozygous patterns at both Pgm and the dimeric Pgi locus.

Genetic distance analyses suggest that L. cervix, L. claparedianus, and L. maumeensis are closely-related (genetic identifies ranged from 0.92–0.85), and may represent subspecies rather than distinct species. Breeding studies need to confirm this assertion. This survey represents the first attempt to characterize allozymic variation of aquatic oligochaetes in North America. Additional work should focus on elucidating taxonomic ambiguities within this group via both morphological and biochemical genetic studies.

Key words

Oligochaeta tubificids allozymes population genetics electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anlauf, A., 1989. Die Charakterisierung von Populationen des Schlammrohrenwurms Tubifex tubifex (Müller) mit Hilfe von Enzymelektrophoretischen, Population sgenetischen und Okologischen Methoden. Ph.D. Dissertation, University of Cologne, Germany, 132 pp.Google Scholar
  2. Barbour, M. T., D. G. Cook & R. S. Pomerantz, 1980. On the question of hybridization and variation in the oligochaete genus Limnodrilus. In R. O. Brinkhurst & D. G. Cook (eds), Aquatic Oligochaete Biology. Plenum Press, New York: 41–53.Google Scholar
  3. Battaglia, B. & J. A. Beardmore (eds), 1978. Marine Organisms: Genetics, Ecology and Evolution. Plenum Press, New York.Google Scholar
  4. Brinkhurst, R. O., 1965. Studies on the North American aquatic Oligochaeta. II. Tubificidae. Proc. Acad. nat. Sci. Philad. 117: 117–172.Google Scholar
  5. Brinkhurst, R. O., 1978. Freshwater Oligochaeta in Canada. Can. J. Zool. 56: 2166–2175.Google Scholar
  6. Brinkhurst, R. O., 1980. Pollution Biology — the North American experience. Aquatic Oligochaete Biology. Edited by R. O. Brinkhurst and D. G. Cook. Plenum Press, New York: 471–475.Google Scholar
  7. Brinkhurtst, R. O., 1986. Guide to the Freshwater Aquatic Microdrile Oligochaetes of North America. Can. Spec. Publ. Fish. aquat. Sci. 1–129.Google Scholar
  8. Brinkhurst, R. O. & D. G. Cook (eds), 1980. Aquatic Oligochaete Biology. Plenum Press, New York.Google Scholar
  9. Brinkhurst, R. O. & B. G. M. Jamieson, 1971. Aquatic Oligochaeta of the World. University of Toronto Press, Toronto: 1–860.Google Scholar
  10. Chapman, P. M., M. A. Farrel & R. O. Brinkhurst, 1982. Relative tolerances of selected aquatic oligochaetes to individual pollutant and environmental factors. Aquat. Toxicol. 2: 47–67.CrossRefGoogle Scholar
  11. Christensen, B., 1980. Annelida. In B. John (ed.). Animal Cytogenetics, 2. Gebruder Borntraeger, Berlin, Stuttgart: 1–79.Google Scholar
  12. Christensen, B., 1984. Asexual propagation and reproductive strategies in aquatic Oligochaeta. Hydrobiologia 115: 91–95.Google Scholar
  13. Hebert, P. D. N. & M. J. Beaton, 1989. Methodologies for Allozyme Analysis using Cellulose Acetate Electrophoresis: A Practical Handbook, Helena Laboratories, Beaumont, Texas, 1–31.Google Scholar
  14. Klerks, P. L. & J. S. Levinton, 1989. Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metalpolluted site. Biol. Bull. 176: 135–141.Google Scholar
  15. Milbrink, G., 1973. Protein taxonomy of aquatic oligochaetes and its ecological applications. Oikos 24: 473–474.Google Scholar
  16. Milbrink, G., 1980. Oligochaete communities in pollution biology: the European experience with special reference to lakes in Scandinavia. Aquatic Oligochaete Biology. Edited by R. O. Brinkhurst and D. G. Cook, Plenum Press, New York: 185–193.Google Scholar
  17. Milbrink, G. & L. Nyman, 1973. On the protein taxonomy of aquatic oligochaetes. Zoon 1: 29–35.Google Scholar
  18. Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.Google Scholar
  19. Nevo, E., 1978. Genetic variation in natural populations: patterns and theory. Theor. Pop. Biol. 13: 121–177.Google Scholar
  20. Nevo, E., A. Beiles & R. Ben-Shlomo, 1984. The evolutionary significance of genetic diversity: ecological, demographic, and life history correlates. In G. S. Mani (ed.). Evolutionary Dynamics of Genetic Diversity, Lecture Notes in Biomathematics 53: 13–213.Google Scholar
  21. Swofford, D. L. & R. B. Selander, 1989. BIOSYS-1: A computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 1.7, Illinois Natural History Survey, Champaign, Illinois, 1–43.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Lawrence J. Weider
    • 1
  1. 1.Great Lakes InstituteUniversity of WindsorWindsorCanada

Personalised recommendations