, Volume 287, Issue 2, pp 179–194 | Cite as

Bioavailability of phosphorus in agriculturally loaded rivers in southern Finland

  • Petri Ekholm


The potential bioavailability of phosphorus in agriculturally loaded rivers of southern Finland was determined by an algal bioassay and the release of the potentially bioavailable particulate P was estimated by sorption studies. According to the bioassay 0 to 13.2 per cent (mean 5.1%) of the particulate P in river water samples was potentially bioavailable. Dissolved reactive P (DRP) in river waters appeared to be totally bioavailable whereas the dissolved unreactive P appeared not to be utilized by algae. In addition to river waters two lake sediment samples were also assayed. In these samples 0 and 2.6% of the P was bioavailable. The potential bioavailability of particulate P in agriculturally loaded rivers obtained in this study was lower than that reported in studies from other countries. The difference was assumed to arise partly from methodological factors and partly from the nature of the Finnish soils. The EPC (equilibrium phosphate concentration) values indicated that during the period when most of the agricultural loading enters the lakes in Finland, potentially bioavailable P is not released from the particles because of the relatively high DRP concentration in the receiving waters. However, during the algal production period the DRP concentration in lakes decreases below the EPC and potentially bioavailable particulate P is desorbed. The increase in pH during this period may further enhance the desorption of P.

Key words

agriculture phosphorus bioavailability bioassays isotherms eutrophication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berge, D. & T. Källqvist, 1990. Biotilgjengelighet av fostor i jordbruksavrenning. Sammenliknet med andre forurensningskilder. Sluttrapport. NIVA rapport, 130 pp.Google Scholar
  2. Boström, B., G. Persson & B. Broberg, 1988. Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170: 133–155.Google Scholar
  3. Bradford, M. E. & R. H. Peters, 1987. The relationship between chemically analyzed phosphorus fractions and bioavailable phosphorus. Limnol. Oceanogr. 32: 1124–1137.Google Scholar
  4. Caraco, N. F., J. J. Cole & G. E. Likens, 1989. Evidence for sulphate controlled phosphorus release from sediments of aquatic systems. Nature 341: 316–318.CrossRefGoogle Scholar
  5. Cowen, W. F. & G. F. Lee, 1976. Phosphorus availability in particulate materials transported by urban runoff. J. Wat. Pollut. Cont. Fed. 48: 580–591.Google Scholar
  6. DePinto, J. V., 1982. An experimental apparatus for evaluating kinetics of available phosphorus release from aquatic particulates. Wat. Res. 16: 1065–1070.CrossRefGoogle Scholar
  7. DePinto, J. V., T. C. Young & S. C. Martin, 1981. Algal-available phosphorus in suspended sediments from Lower Great Lakes tributaries. J. Great Lakes Res. 7: 311–325.Google Scholar
  8. Dorich, R. A., D. W. Nelson & L. E. Sommers, 1980. Algal bioavailability of sediment phosphorus in drainage water of the Black Creek Watershed. J. envir. Qual. 9: 557–563.Google Scholar
  9. Dorich, R. A., D. W. Nelson & L. E. Sommers, 1984. Algal availability of phosphorus is suspended stream sediments of varying particle size. J. envir. Qual. 13: 82–86.Google Scholar
  10. Ellis, B. K. & J. A. Stanford, 1988. Phosphorus bioavailability of fluvial sediments determined by algal assays. Hydrobiologia 160: 9–18.Google Scholar
  11. Fitter, A. H. & C. D. Sutton, 1975. The use of the Freundlich isotherm for soil phosphate sorption data. J. Soil Sci. 26: 241–246.Google Scholar
  12. Golterman, H. L., 1988. Reflections on fractionation and bioavailability of sediment bound phosphate. Arch. Hydrobiol. Beih. 30: 1–4.Google Scholar
  13. Green, D. B., T. J. Logan & N. E. Smeck, 1978. Phoshate adsorption-desorption characteristics of suspended sediments in the Maumee River basin of Ohio. J. envir. Qual. 7: 208–212.Google Scholar
  14. Hartikainen, H., 1979. Phosphorus and its reactions in terrestrial soils and lake sediments. J. Scient. agric. Soc. Finl. 51: 537–624.Google Scholar
  15. Hartikainen, H., 1981. Effect of decreasing acidity on the extractability of inorganic soil phosphorus. J. Scient. agric. Soc. Finl. 53: 16–26.Google Scholar
  16. Hartikainen, H., 1982a. Relationship between phosphorus intensity and capacity parameters in Finnish mineral soils. I Interpretation and application of phosphorus sorption-desorption isotherms. J. Scient. agric. Soc. Finl. 54: 245–250.Google Scholar
  17. Hartikainen, H., 1982b. Relationship between phosphorus intensity and capacity parameters in Finnish mineral soils. II Sorption-desorption isotherms and their relation to soil characteristics. J. Scient. agric. Soc. Finl. 54: 251–262.Google Scholar
  18. Hartikainen, H., 1986. Phosphorus concentration of soil-water extract as a function of extraction ratio. Trans. 13th Congr. int. Soc. Soil. Sci. 2: 325–326.Google Scholar
  19. Hartikainen, H., 1991. Potential mobility of accumulated phosphorus in soil as estimated by the indices of Q/I plots and by extractant. Soil Sci. 152: 204–209.Google Scholar
  20. Hartikainen, H. & M. Yli-Halla, 1983. Chloride and sulphate solutions as extractants for soil P. III Effect of increasing sulphate concentration on P desorption. J. Scient. agric. Soc. Finl. 55: 363–369.Google Scholar
  21. Hegemann, D. A. & J. D. Keenan, 1985. Measurement of watershed phosphorus: a review. Toxicol. envir. Chem. 9: 265–289.Google Scholar
  22. Holford, I. C. R. & G. E. G. Mattingly, 1976. A model for the behavior of labile phosphate in soil. Plant Soil 44: 219–229.CrossRefGoogle Scholar
  23. Källqvist, T. & D. Berge, 1990. Biological availability of phosphorus in agricultural runoff compared to other phosphorus sources. Verh. int. Ver. Limnol. 24: 214–217.Google Scholar
  24. Klotz, R. L., 1988. Sediment control of soluble reactive phosphorus in Hoxie Gorge Creek, New York. Can. J. Fish. aquat. Sci. 45: 2026–2034.CrossRefGoogle Scholar
  25. Kotai, J., 1972. Instructions for preparation of modified nutrient solution Z8 for algae. NIVA publ. B-11/69.Google Scholar
  26. Knuuttila, S., O-P. Pietiläinen & L. Kauppi, 1994. Nutrient balances and phytoplankton dynamics in two agriculturally loaded shallow lakes. Hydrobiologia 275/276: 359–369.CrossRefGoogle Scholar
  27. Kranck, K. 1984. The role of flocculation in the filtering of particulate matter in estuaries. In: Kennedy, V. S. (ed.), The estuary as a filter. Academic press, New York: 159–175.Google Scholar
  28. Krogstad, T. & Ø. Løvstad, 1991. Available soil phosphorus for planktonic blue-green algae in eutrophic lake water samples. Arch. Hydrobiol. 122: 117–128.Google Scholar
  29. Lee, G. F., R. A. Jones & W. Rast, 1980. Availability of phosphorus to phytoplankton and its implications for phosphorus management strategies. In R. C. Loehr, C. S. Martin & W. Rast (eds), Phosphorus management strategies for lakes. Ann Arbor Sci. Ann Arbor: 259–308.Google Scholar
  30. Marengo, G. & G. Premazzi, 1985. Biological availability of P-loads to Lake Lugano. Verh. int. Ver. Limnol. 22: 3351–3355.Google Scholar
  31. McLachlan, J., 1973. Growth media — marine. In J. R. Stein (ed.), Handbook of phycological methods. Culture Methods and growth measurements. Cambridge University Press, Cambridge: 25–52.Google Scholar
  32. Persson, G., 1990. Utilization of phosphorus in suspended particulate matter as tested by algal bioassays. Verh. int. Ver. Limnol. 24: 242–246.Google Scholar
  33. Pietiläinen, O-P. & S. Rekolainen, 1991. Dissolved reactive and total phosphorus load from agricultural and forested basins to surface waters in Finland. Aqua Fennica 21: 127–136.Google Scholar
  34. Pitkänen, H., 1987. Joet rannikkovesien ravinnekuormittajana Suomessa. Licenciate thesis, University of Helsinki, Department of Limnology, 33 pp.Google Scholar
  35. Rekolainen, S., 1989. Phosphorus and nitrogen load from forest and agricultural areas in Finland. Aqua Fennica 19: 95–107.Google Scholar
  36. Ribo, J. M. & K. L. E. Kaiser, 1987. Photobacterium phosphoreum toxicity bioassay. I. Test procedures and applications. Toxicity Assessment: An International Quaterly 2: 305–323.Google Scholar
  37. Sagher, A., R. Harris & D. E. Armstrong, 1975. Availability of sediment phosphorus to microorganisms. Water Resource Center, Univ. of Wis. Mad. Tech. Rep. WIS WRC 75–01, 56 pp.Google Scholar
  38. SFS 3025, 1986. Veden fosfaatin määritys. Suomen standardisoimisliitto SFS, 10 pp.Google Scholar
  39. SFS 3026, 1986. Veden kokonaisfosforin määritys. Hajotus peroksodisulfaatilla. Suomen standardisoimisliitto SFS, 11 pp.Google Scholar
  40. SFS 5072, 1986. Vesitutkimukset. Myrkyllisyystesti leväpuhdasviljelmällä. Suomen standardisoimisliitto SFS, 11 pp.Google Scholar
  41. Sonzogni, W. C., S. C. Chapra, D. E. Armstrong & T. J. Logan, 1982. Bioavailability of phosphorus inputs to lakes. J. envir. Qual. 11: 555–563.CrossRefGoogle Scholar
  42. Twinch, A. J., 1987. Phosphate exchange characteristics of wet and dried sediment samples from a hypertrophic reservoir: implications for the measurements of sediment phosphorus status. Wat. Res. 21: 1225–1230.CrossRefGoogle Scholar
  43. Young, T. C., J. V. DePinto, S. C. Martin & J. S. Bonner, 1985. Algal-available particulate phosphorus in the Great Lakes Basin. J. Great Lakes Res. 11: 434–446.CrossRefGoogle Scholar
  44. Williams, J. D. H., H. Shear & R. L. Thomas, 1980. Availability to Scenedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes. Limnol. Oceanogr. 25: 1–11.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Petri Ekholm
    • 1
  1. 1.National Board of Waters and the EnvironmentWater and Environmental Research InstituteHelsinkiFinland

Personalised recommendations