Advertisement

Hydrobiologia

, 287:161 | Cite as

Molluscan cellulolytic activity responses to zinc exposure in laboratory and field stream comparisons

  • J. L. Farris
  • J. L. Grudzien
  • S. E. Belanger
  • D. S. Cherry
  • J. CairnsJr.
Article

Abstract

Changes in cellulolytic activity of Asiatic clams (Corbicula fluminea) and snails (Mudalia dilatata) were monitored throughout 30-d exposures to constant additions (0.0, 0.025, 0.05, 0.50, and 1.0 mg l−1) of zinc (Zn). All exposures of 0.05 mg Zn 1−1 or greater significantly reduced enzyme activity (exo- and endocellulase) in both molluscs as early as 10 d following exposures in outdoor laboratory streams incorporating New River water as diluent. More sterile laboratory stream exposures were less consistent in yielding quantifiable differences that could be attributed to metal induced stress apart from effects of nutritional stress. Tests conducted under natural field conditions during all seasons did not differ significantly with respect to changes in annual energetics of either clams or snails. However, evidence of differing uptake routes, with respect to two ecologically and physiologically distinct molluscs, was apparent in bioaccumulation, growth, and enzyme activity throughout exposure and following 60-d recovery.

Key words

zinc cellulolytic activity molluscs monitoring artificial streams 

References

  1. Almin, K. E. & K. E. Eriksson, 1967. Enzymatic degradation of polymers: I-Viscometric method for the determination of enzymatic activity. Biochem. Biophys. Acta 139: 238–247.PubMedGoogle Scholar
  2. American Public Health Association, American Water Works Association & Water Pollution Control Federation, 1980. Standard methods for the examination of water and wastewater. Washington, D.C., 1193 pp.Google Scholar
  3. Bayne, B. L., 1975. Aspects of physiological condition in Mytilus edulis with special reference to the effects of oxygen tension and salinity. In H. Barnes (ed.), Proceedings 9th European Marine Biology Symposium. Aberdeen University Press, Aberdeen: 213–238.Google Scholar
  4. Bayne, B. L., 1976. Marine mussels: Their ecology and physiology. Cambridge University Press, Cambridge, 506 pp.Google Scholar
  5. Belanger, S. E., 1991. The effect of dissolved oxygen, sediment, and sewage treatment plant discharges upon growth, survival and density of Asiatic clams. Hydrobiologia 218: 113–126.CrossRefGoogle Scholar
  6. Belanger, S. E., D. S. Cherry & J. Cairns, Jr., 1986a. Uptake of chrysotile asbestos fibers alters growth and reproduction of Asiatic clams. Can. J. Fish. aquat. Sci. 43: 43–52.CrossRefGoogle Scholar
  7. Belanger, S. E., J. L. Farris, D. S. Cherry & J. Cairns, Jr., 1986b. Growth of Asiatic clams (Corbicula sp.) during and after long-term zinc exposure in field-located and laboratory artificial streams. Arch. envir. Contam. Toxicol. 15: 427–434.CrossRefGoogle Scholar
  8. Bio-Rad Laboratories Technical Bulletin 1051, 1977. Bio-Rad protein assay. Bio-Rad Laboratories, Richmond, CA.Google Scholar
  9. Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72: 248–254.PubMedCrossRefGoogle Scholar
  10. Burris, J. A., M. S. Bamford & A. J. Stewart, 1990. Behavioral response of marked snails as indicators of water quality. Envir. Toxicol. Chem. 9: 69–76.Google Scholar
  11. Clark, J. R., J. H. Rodgers, Jr., K. L. Dickson & J. Cairns, Jr., 1980. Using artificial streams to evaluate perturbation effects on aufwuchs structure and function. Wat. Res. Bull. 16: 100–104.Google Scholar
  12. Dauble, D. D., D. S. Daly & C. S. Abernathy, 1985. Factors affecting growth and survival of the Asiatic clam, Corbicula sp., in controlled laboratory conditions. In R. D. Cardwell, R. Purdy & R. C. Bahner (eds), Aquatic Toxicology and Hazard Assessment. American Society for Testing and Materials, Philadelphia, PA: 134–144.Google Scholar
  13. Davis, C., 1964. The influence of suspensions of microorganisms of different concentrations on the pump and retention of food by the mussel (Mytilus edulis L.). Neth. J. Sea Res. 2: 233–249.CrossRefGoogle Scholar
  14. Doherty, F. G., 1990. The Asiatic clam, Corbicula spp., as a biological monitor in freshwater environments. Envir. Monit. Assess. 15: 143–181.CrossRefGoogle Scholar
  15. Doherty, F. G. & D. S. Cherry, 1988. Tolerance of the Asiatic clam, Corbicula spp., to lethal levels of toxic stressors — A review. Envir. Pollut. 51: 269–313.CrossRefGoogle Scholar
  16. Doherty, F. G., D. S. Cherry & J. Cairns, Jr., 1987. Valve closure responses of the Asiatic clam Corbicula fluminea exposed to cadmium and zinc. Hydrobiologia 153: 159–167.CrossRefGoogle Scholar
  17. Farris, J. L., 1986. Cellulolytic responses to heavy metal accumulation in Corbicula fluminea and Mudalia dilatata. Ph.D. Thesis. Virginia Polytechnic Institute and State University, Blacksburg, VA.Google Scholar
  18. Farris, J. L., J. H. Van Hassel, S. E. Belanger, D. S. Cherry & J. Cairns, Jr., 1988. Application of cellulolytic activity of Asiatic clams (Corbicula sp.) to in-stream monitoring of power plant effluents. Envir. Toxicol. Chem. 7: 701–713.Google Scholar
  19. Farris, J. L., S. E. Belanger, D. S. Cherry & J. Cairns, Jr., 1989. Cellulolytic activity as a novel approach to assess long-term zinc stress to Corbicula. Wat. Res. 23: 1275–1283.CrossRefGoogle Scholar
  20. Foe, C. & A. Knight, 1985. The effect of phytoplankton and suspended sediment of the growth of Corbicula fluminea (Bivalvia). Hydrobiologia 127: 105–115.CrossRefGoogle Scholar
  21. Foe, C. & A. Knight, 1986. Growth of Corbicula fluminea (Bivalvia) fed artificial and algal diets. Hydrobiologia 133: 165–174.CrossRefGoogle Scholar
  22. Foe, C. & A. Knight, 1987. Assessment of the biological impact of point source discharges employing Asiatic clams. Arch. envir. Contam. Toxicol. 16: 39–51.CrossRefGoogle Scholar
  23. Forstner, U. & G. T. W. Whittman, 1979. Metal pollution in the aquatic environment. Springer-Verlag, New York, 486 pp.Google Scholar
  24. Foster-Smith, R. L., 1975. The effect of concentration of suspension on the filtration rates of pseudofaecal production for Mytilus edulis, and Cerastoderma eduli (L.) and Venerupis pullastra. J. exp. mar. Biol. Ecol. 17: 1–22.CrossRefGoogle Scholar
  25. Genter, R. B., D. S. Cherry, E. P. Smith & J. Cairns, Jr., 1987. Algal-periphyton population and community changes from zinc stress in stream mesocosms. Hydrobiologia 153: 261–275.Google Scholar
  26. Giesy, J. P., R. L. Graney, J. L. Newsted, C. J. Rosiu, A. Benda, R. G. Kreis, Jr. & F. J. Horvath, 1988. Comparison of three sediment bioassay methods using Detroit River sediments. Envir. Toxicol. Chem. 7: 483–498.Google Scholar
  27. Goldberg, E. W., U. T. Bowen, J. W. Farrington, G. Harvey, J. H. Martin, P. L. Parker, R. W. Risebrough, W. Robertson, E. Schneider & Gamble, 1978. The mussel watch. Envir. Conserv. 5: 1–25.CrossRefGoogle Scholar
  28. Graney, R. L., D. S. Cherry & J. Cairns, Jr., 1983. Heavy metal indicator potential of the Asiatic clam (Corbicula fluminea) in laboratory artificial streams. Hydrobiologia 102: 81–88.CrossRefGoogle Scholar
  29. Graney, R. L., D. S. Cherry & J. Cairns, Jr., 1984. The influence of substrate, pH, diet and temperature upon cadmium accumulation in the Asiatic clam (Corbicula fluminea) in laboratory artificial streams. Wat. Res. 18: 833–842.CrossRefGoogle Scholar
  30. Harrison, F. L., J. P. Knezovich & D. W. Rice, Jr., 1984. The toxicity of copper to the adult and early life stages of the freshwater clam, Corbicula manilensis. Arch. environ. Contam. Toxicol. 13: 85–92.CrossRefGoogle Scholar
  31. Hartley, D. M. & J. B. Johnston, 1983. Use of the freshwater clam Corbicula manilensis as a monitor for organochlorine pesticides. Bull. envir. Contam. Toxicol. 31: 33–40.CrossRefGoogle Scholar
  32. Hollander, M. & D. A. Wolfe, 1973. Nonparametric statistical methods. J. Wiley & Sons, New York.Google Scholar
  33. Johnston, J. B. & D. M. Hartley, 1981. Vivalves as monitors for persistent pollutants in marine and freshwater environments. In S. M. Somani & F. L. Cavender (eds), Environmental Toxicology. Charles C. Thomas Publishers, Springfield, IL: 184–198.Google Scholar
  34. Kley, H. V. & S. Hale, 1977. Assay for protein by dye binding. Anal. Biochem. 81: 485–487.PubMedCrossRefGoogle Scholar
  35. Kosinski, R. J., 1989. Artificial streams in ecotoxicological research. In A. Boudou & F. Ribeyre (eds), Aquatic Ecotoxicology: Fundamental Concepts and Methodologies, Volume I. CRC Press, Boca Raton, FL: 297–316.Google Scholar
  36. Miller, G. L., 1959. use of dinitrosalicylic acid reagent for determination of reducing sugar. Analyt. Chem. 31: 426–428.CrossRefGoogle Scholar
  37. O'Donnel, J. R., B. M. Kaplan & H. E. Allen, 1985. Bioavailability of trace metals in natural waters. In R. D. Cardwell, R. Purdy & R. C. Bahner (eds), Aquatic Toxicology and Hazard Assessment. American Society for Testing and Materials, Philadelphia, PA: 485–501.Google Scholar
  38. Pentreath, R. J., 1973. The accumulation from water of 65Zn, 54Mn, 58Co and 59Fe by the mussel Mytilus edulis. J. mar. biol. Ass. U.K. 53: 127–143.CrossRefGoogle Scholar
  39. Phillips, D. J. H., 1976. The common mussel Mytilus edulis is an indicator of pollution by zinc, cadmium, lead and copper. II. Relationship of metals in the mussel to those discharged by industry. Mar. Biol. 38: 71–80.CrossRefGoogle Scholar
  40. Phillips, D. J. H., 1977. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments — A review. Envir. Pollut. 13: 281–317.CrossRefGoogle Scholar
  41. Phillips, D. J. H., 1980. Quantitative aquatic biological indicators: Their use to monitor trace metal and organochlorine pollution. Applied Science Publishers Ltd, London, 488 pp.Google Scholar
  42. Poulsen, E., H. V. Rijsgard & F. Molenberg, 1982. Accumulation of cadmium bioenergetica in the mussel Mytilus edulis. Mar. Biol. 68: 25–29.CrossRefGoogle Scholar
  43. Russel-Hunter, W. D., 1985. Physiological, ecological and evolutionary aspects of molluscan tissue degrowth. Am. Malacol. Bull. 3: 213–222.Google Scholar
  44. Simkiss, K. & A. Z. Mason, 1983. Metal ions: Metabolic and toxic effects. In P. W. Hochachka (ed.), The Mollusca: Environmental Biochemistry and Physiology. Academic Press, New York: 101–164.Google Scholar
  45. Sinsabaugh, R. L., 1980. Distribution of Microbial and Macroinvertebrate Cellulolytic Activity in Relation to Leaf Processing in a Headwater Stream. M. S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, 119 pp.Google Scholar
  46. Sinsabaugh, R. L., A. E. Linkins & E. F. Benfield, 1985. Cellulase digestion and assimilation by three leaf-shredding aquatic insects. Ecology 66: 1464–1471.CrossRefGoogle Scholar
  47. U.S. Environmental Protection Agency, 1987. Ambient water quality criteria for zinc — 1987. EPA-440/5–87–006, Washington, D.C.Google Scholar
  48. Viarengo, A., M. Pertica, G. Mancinelli, S. Palmero, G. Zanicchi & M. Orunesu, 1982. Evaluation of general and specific stress indices in mussels collected from populations subjected to different levels of heavy metal pollution. Mar. Envir. Res. 6: 235–243.CrossRefGoogle Scholar
  49. Young, D. R., D. McDermott-Ehrlich & T. C. Heesen, 1977. Sediments as sources of DDT and PCB. Mar. Pollut. Bull. 8: 254–257.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • J. L. Farris
    • 1
  • J. L. Grudzien
    • 2
  • S. E. Belanger
    • 3
  • D. S. Cherry
    • 1
  • J. CairnsJr.
    • 1
  1. 1.Department of Biology and University Center for Environmental and Hazardous Materials StudiesVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Grace Bio-Oncology, Inc.PontiacUSA
  3. 3.Environmental Safety Department, The Procter and Gamble CompanyIvorydale Technical CenterCincinnatiUSA

Personalised recommendations