Skip to main content
Log in

Extent of high-affinity iron transport systems in field isolates of rhizobia

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

A Uruguayan rhizobia collection (67 isolates) obtained from nodules of Medicago sativa, Melilotus albus, Medicago polymorpha, Trifolium subterraneum, Trifolium repens, Trifolium vesiculosum, Lotus corniculatus, Lotus subbiflorus, Lotus pedunculatus, Ornithopus sp. and Adesmia sp. has been examined to assess the occurrence of high affinity iron uptake systems.

CAS (Chrome-azurol S)-assay results suggested that most of the free-living form of these microsymbionts may produce siderophores. The highest siderophore production was observed among Medicago and Trifolium microsymbionts whereas no siderophore expression or moderate positive results were found among Lotus microsymbionts; suggesting that microsymbionts of legumes growing on neutral or alkaline soils may express in vitro enhanced siderophore production.

Electrophoretic patterns of outer-membrane protein enriched fractions revealed that iron-limited microsymbionts of Medicago sativa, Lotus corniculatus, Lotus subbiflorus, Trifolium repens, Trifolium subterraneum and Ornithopus sp. produced high molecular weight proteins (ranging from 64 to 94 kDa) compared to cells grown in iron-sufficient media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angerer A, Klupp B and Braun V 1992 Iron transport systems of Serratia marcesens. J. Bacteriol. 174, 1378–1387.

    PubMed  CAS  Google Scholar 

  • Alexander D B and Zuberer D A 1991 Use of chrome azurol S reagent to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 12, 39–45.

    Article  CAS  Google Scholar 

  • Baraibar A, Frioni L, Guedes M, Pagliano D, Vieiras S and Casartelli R 1988 Relevamiento y caracterización de la población de Rhizobium loti en suelos del Uruguay. In Proceedings of the XIV Reunión Latinoamericana de Rhizobiologia. pp 46–51. Santiago, Chile.

  • Bjerrum O J 1981 Analysis of membrane antigens by means of quantitative detergent-immunoelectrophoresis. In Membrane Proteins, A Laboratory Manual. Eds. AAzzi, UBrodbeck and P.Zahler. pp 13–42. Springer-Verlag, New York.

    Google Scholar 

  • Carrillo-Castaneda G and Peralta J R V 1988 Siderophore-like activities in Rhizobium phaseoli. J. Plant Nutr. 11, 935–944.

    Google Scholar 

  • Carson K C, Dilworth M J and Glenn A R 1992 Siderophore production and iron transport in Rhizobium leguminosarum by viciae MNF710. J. Plant Nutr. 15, 2203–2220.

    Article  CAS  Google Scholar 

  • Critchon R R 1991 Microbial iron uptake and intracellular release. In Inorganic Biochemistry of Iron Metabolism. Ed. JBurgess. pp 59–76. Ellis Horwood, Chichester, England.

    Google Scholar 

  • deLorenzo V, Wee S, Herrero M and Neilands J B 1987 Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. J. Bacteriol. 169, 2624–2630.

    PubMed  Google Scholar 

  • deMaagd R A and Lugtenberg B J J 1986 Fractionation of Rhizobium leguminosarum cells into outer membrane, cytoplasmic membrane and periplasmic and cytoplasmic components. J. Bacteriol. 167, 1083–1085.

    PubMed  Google Scholar 

  • Expert D and Gill P RJr 1992 Iron: a modulator in bacterial virulence and symbiotic nitrogen-fixation. In Molecular Signals in Plant-Microbe Communications. Ed. D P SVerma. pp 229–245. CRC Press, Inc. USA.

    Google Scholar 

  • Fabiano E and Arias A 1991 Competition between a native isolate of Rhizobium leguminosarum bv trifolii and two commercial inoculant strains for nodulation of clover. Plant and Soil 137, 293–296.

    Article  Google Scholar 

  • Gill P RJr, Barton L L, Scoble M D and Neilands J B 1991 A high-affinity iron transport system of Rhizobium meliloti may be required for efficient nitrogen fixation in planta. Plant and Soil 130, 211–217.

    Article  CAS  Google Scholar 

  • Gill P RJr and Neilands J B 1989 Cloning a genomic region required for a high-affinity iron-uptake system in Rhizobium meliloti 1021. Mol. Microbiol. 39, 1183–1189.

    Google Scholar 

  • Guerinot M L, Meidl E J and Plessner O 1990 Citrate as a siderophore in Bradyrhizobium japonicum. J. Bacteriol. 172, 3298–3303.

    PubMed  CAS  Google Scholar 

  • Höfte M 1990 Plant growth promotion and siderophore production by the fluorescent Pseudomonas strain 7NSKZ. Ph D thesis. Faculty of Agricultural Sciences. Belgium.

  • Jurkevitch E, Hadar Y and Chen Y 1992 Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl. Environ. Microbiol. 58, 119–124.

    PubMed  CAS  Google Scholar 

  • Labandera C A and Vincent J M 1975 Competition between an introduced strain and native Uruguayan strains of Rhizobium trifolii. Plant and Soil 42, 327–347.

    Article  Google Scholar 

  • Laemmli U K 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Modi M, Shah K S and Modi V V 1985 Isolation and characterization of cathecol-like siderophore from cowpea Rhizobium RA-1. Arch. Microbiol. 141, 156–158.

    Article  CAS  Google Scholar 

  • Monza J, Fabiano E and Arias A 1992 Characterization of an indigenous population of rhizobia nodulating Lotus corniculatus. Soil Biol. Biochem. 24, 241–247.

    Article  CAS  Google Scholar 

  • Nadler K D, Johnston A W B, Chen J W and John T R 1990 A Rhizobium leguminosarum mutant defective in symbiotic iron acquisition. J. Bacteriol. 172, 670–677.

    PubMed  CAS  Google Scholar 

  • O'Gara F, Treacy P, O'Sullivan D, O'Sullivan M and Higgins P 1986 Biological control of phytopathogens by Pseudomonas spp.: genetic aspects of siderophore production and root colonization. In Iron, Siderophores and Plant Diseases. Ed. T RSwinburne. pp 331–339. Plenum Publishing Corp., New York.

    Google Scholar 

  • Plessner O, Klapatch T and Guerinot M L 1993 Siderophore utilization by Rhizobium japonicum. Appl. Environ. Microbiol. 59, 1688–1690.

    PubMed  CAS  Google Scholar 

  • Reigh R and O'Conell M 1993 Siderophore-mediated iron transport correlates with the presence of specific iron-regulated proteins in the outer membrane of Rhizobium meliloti. J. Bacteriol. 175, 94–102.

    PubMed  CAS  Google Scholar 

  • Rioux C R, Jordan D C and Rattray J B M 1986 Iron requirement of Rhizobium leguminosarum and secretion of anthranilic acid during growth on an iron-deficient medium. Arch. Biochem. Biophys. 248, 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Schwyn B and Neilands J B 1987 Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Smith M J, Shooley J N, Schwyn B, Holden I and Neilands J B 1985 Rhizobactin, a structurally novel siderophore from Rhizobium meliloti. J. Am. Chem. Soc. 107, 1739–1743.

    Article  CAS  Google Scholar 

  • Smith M J and Neilands J B 1984 Rhizobactin, a siderophore from Rhizobium meliloti. J. Plant Nutr. 7, 449–458.

    CAS  Google Scholar 

  • Skorupska A, Mieczyslawa D and Lorkiewicz Z 1989 Siderophore production and utilization by Rhizobium trifolii. J. Bacteriol. 2, 45–49.

    CAS  Google Scholar 

  • Thompson J A 1968 Studies of problems of field nodulation in Uruguay. In IV Reunion Latinoamericana sobre Inoculantes para Leguminosas.pp 415–425. Porto Alegre, Brasil.

  • Triplett E W and Sadowsky M J 1992 Genetic of competition for nodulation of legumes. Ann. Rev. Microbiol. 46, 399–428.

    Article  CAS  Google Scholar 

  • Vincent J M 1970 In A Manual for the Practical Study of Root-nodule Bacteria I.B.P. Handbook N 15. Blakwell, Oxford.

    Google Scholar 

  • Wright S F, Foster J G and Bennett O L 1986 Production and use of monoclonal antibodies for identification of strains of Rhizobium trifolii. Appl. Environ. Microbiol. 52, 119–123.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabiano, E., Gualtieri, G., Pritsch, C. et al. Extent of high-affinity iron transport systems in field isolates of rhizobia. Plant Soil 164, 177–185 (1994). https://doi.org/10.1007/BF00010069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00010069

Key words

Navigation