Influence of phosphate status on phosphate uptake kinetics of maize (Zea mays) and soybean (Glycine max)

Abstract

To obtain plants of different P status, maize and soybean seedlings were grown for several weeks in flowing nutrient solution culture with P concentrations ranging from 0.03–100 µmol P L-1 kept constant within treatments. P uptake kinetics of the roots were then determined with intact plants in short-term experiments by monitoring P depletion of a 3.5 L volume of nutrient solution in contact with the roots. Results show maximum influx, Imax, 5-fold higher in plants which had been raised in solution of low compared with high P concentration. Because P concentrations in the plants were increased with increase in external P concentration, Imax was negatively related to % P in shoots. Michaelis constants, Km, were also increased with increased pretreatment P concentration, only slightly with soybean, but by a factor of 3 with maize. The minimum P concentration, Cmin, where net influx equals zero, was found between 0.06 and 0.3 µmol L-1 with a tendency to increase with pretreatment P concentration. Filtration of solutions at the end of the depletion experiment showed that part of the external P was associated with solid particles.

It was concluded that plants markedly adapt P uptake kinetics to their P status, essentially by the increase of Imax, when internal P concentration decreases. Changes of Km and Cmin were of minor importance.

This is a preview of subscription content, access via your institution.

References

  1. Asher C J and Edwards D G 1978 Relevance of dilute solution culture studies to problems in low fertility tropical soils. In Mineral Nutrition of Legumes in Tropical and Subtropical Soils. Eds. C.S. Andrew and E.J. Kamprath. pp 131–152. CSIRO, Melbourne.

    Google Scholar 

  2. Barber S A 1984 Soil Nutrient Bioavailability: A Mechanistic Approach. John Wiley and Sons, New York, 398 p.

    Google Scholar 

  3. Claassen N and Barber S A 1974 A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiol. 54, 564–568.

    Google Scholar 

  4. Claassen N, Syring K M and Jungk A 1986 Verification of a mathematical model by simulating potassium uptake from soil. Plant and Soil 95, 209–220.

    Google Scholar 

  5. Clarkson D T and Scattergood C B 1982 Growth and phosphate transport in barley and tomato plants during the development of, and recovery from, phosphate stress. J. Exp. Bot. 33, 865–875.

    Google Scholar 

  6. Cogliatti D H and Clarkson D T 1983 Physiological changes in, and phosphate uptake by potato plants during development of, and recovery from phosphate deficiency. Physiol. Plant. 58, 287–294.

    Google Scholar 

  7. Cornish-Bowden A 1979 Fundamentals of Enzyme Kinetics. Butterworths, London-Boston.

    Google Scholar 

  8. Drew M C, Saker L R, Barber S A and Jenkins W 1984 Changes in the kinetics of phosphate and potassium absorption in nutrient-deficient barley roots measured by a solution depletion technique. Planta 160, 490–499.

    Google Scholar 

  9. Edwards D G and Asher C J 1974 The significance of solution flow rate in flowing culture experiments. Plant and Soil 41, 161–175.

    Google Scholar 

  10. Elliott G C, Lynch J and Läuchli A 1984 Influx and efflux of P in roots of intact maize plants. Plant Physiol. 76, 336–341.

    Google Scholar 

  11. Fist A J 1987 Regulation of phosphorus transport in tropical grain legumes. PhD Thesis, St. Lucia, Queensland, Australia.

  12. Fist A J, Smith F W and Edwards D G 1987 External phosphorus requirements of five tropical grain legumes growing in flowing-solution culture. Plant and Soil 99, 75–84.

    Google Scholar 

  13. Jintakanon S, Edwards D G and Asher C J 1982 An anomalous, high external phosphorus requirement for young casava plants in solution culture. In Proc. 5th Int. Symp. Trop. Root and Tuber Crops. (Manila, 1979). Eds. E H Belen and M Villaneuva. pp 507–518. PCARRD, Los Baños, Philippines.

    Google Scholar 

  14. Jungk A 1974 Phosphate uptake characteristics of intact root systems in nutrient solution as affected by plant species, age and P supply. In Plant Analysis and Fertilizer Problems. Ed J Wehrmann. pp 185–196. Proc. 7th Internat. Colloq. Hannover. German Society of Plant Nutrition, Hannover, FRG.

    Google Scholar 

  15. Lee R B 1982 Selective and kinetics of ion uptake by barley plants following nutrient deficiency. Ann. Bot. 50, 429–449.

    Google Scholar 

  16. Lefebvre D D and Glass A D M 1982 Regulation of phosphate influx in barley roots: effects of phosphate deprivation and reduction of influx with provision of orthophosphate. Physiol. Plant. 54, 199–206.

    Google Scholar 

  17. Motomizu S, Wakimoto T and Toei K 1983 Spectrometric determination of phosphate in river waters with molybdate and malachite green. Analyst 108, 361–367.

    Google Scholar 

  18. Murphy J and Riley J P 1962 A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36.

    Google Scholar 

  19. Newman E J 1966 A method of estimating the total length of root in a sample. J. Appl. Ecol. 3, 133–145.

    Google Scholar 

  20. Nielsen N E and Barber S A 1978 Differences among genotypes of corn in the kinetics of P uptake. Agron. J. 70, 695–698.

    Google Scholar 

  21. Shock C C and Williams W A 1984 Sulfate uptake kinetics of three annual range species. Agron. J. 76, 35–40.

    Google Scholar 

  22. Williams R F 1948 The effects of phosphorus supply on the rates of intake of phosphorus and nitrogen and upon certain aspects of phosphorus metabolism in gramineous plants. Aust. J. Sci. Res. B 1, 333–361.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jungk, A., Asher, C.J., Edwards, D.G. et al. Influence of phosphate status on phosphate uptake kinetics of maize (Zea mays) and soybean (Glycine max). Plant Soil 124, 175–182 (1990). https://doi.org/10.1007/BF00009256

Download citation

Key words

  • Cmin
  • depletion curve
  • flowing solution culture
  • Glycine max L.
  • Imax
  • Km
  • maize
  • phosphate uptake kinetics
  • soybean
  • Zea mays L.