Skip to main content
Log in

Plant community dynamics in a chain of lakes: principal factors in the decline of rooted macrophytes with eutrophication

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Shoe Lake and East Graham Lake, part of a small chain of lakes in southeastern Michigan, USA, differ in nutrient loading and in the structure and productivity of their aquatic plant communities. A comparative study of species frequency and biomass distributions, nutrient contents, and responses to experimental nutrient enrichment and shading, was conducted to determine the principal factors controlling the macrophyte dynamics. A central objective was to address the question of why rooted macrophyte growth declines with eutrophication, and to test existing models designed to explain this phenomenon. In the more eutrophic Shoe Lake, diversity and productivity of rooted macrophytes were relatively low, restricted primarily by combined shading of phytoplankton, periphyton, and non-rooted macrophytes (principally Ceratophyllum demersum, along with Utricularia vulgaris and Cladophora fracta). In the less eutrophic East Graham Lake, lower nitrogen availability restricted the growth of all of these shading components, resulting in clearer water and higher productivity and diversity of rooted macrophytes. The macrophytes did not allelopathically suppress the phytoplankton in East Graham Lake. The results supported a direct relationship between nutrient loading, increasing growth of phytoplankton, periphyton and non-rooted macrophytes, and decline of rooted macrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M. S. & R. T. Prentki, 1982. Biology, metabolism and functions of littoral submersed weedbeds of Lake Wingra, Wisconsin, USA: A summary and review. Arch. Hydrobiol. Suppl. 62: 33–409.

    Google Scholar 

  • Barko, J. W., 1983. The growth of Myriophyllum spicatum L. in relation to selected characteristics of sediment and solution. Aquat. Bot. 15: 91–103.

    Article  Google Scholar 

  • Barko, J. W. & R. M. Smart, 1979. The nutritional ecology of Cyperus esculentus, an emergent aquatic plant, grown on different sediments. Aquat. Bot. 6: 13–28.

    Article  Google Scholar 

  • Barko, J. W. & R. M. Smart, 1981. Sediment based nutrition of submersed macrophytes. Aquat. Bot. 10: 339–352.

    Article  Google Scholar 

  • Best, E. P. H., 1980. Effect of nitrogen on the growth and nitrogenous compounds of Ceratophyllum demersum. Aquat. Bot. 8: 197–206.

    Article  Google Scholar 

  • Best, E. P. H., D. de Vries & A. Reins, 1984. The macrophytes in the Loosdrecht Lakes: A story of their decline in the course of eutrophication. Verh. int. Ver. Limnol. 22: 868–875.

    Google Scholar 

  • Bourne, W. S., 1932. Ecological and physiological studies on certain aquatic angiosperms. Contrib. Boyce Thompson Inst. 4: 425–496.

    Google Scholar 

  • Chapman, V. J., J. M. A. Brown, C. F. Hill & J. L. Carr, 1974. Biology of excessive weed growth in the hydro-electric lakes of the Waitako River, New Zealand. Hydrobiologia 44: 349–367.

    Article  Google Scholar 

  • Cheney, C. & R. A. Hough, 1983. Factors controlling photosynthetic productivity in a population of Cladophora fracta (Chlorophyta). Ecology 64: 68–77.

    Google Scholar 

  • Dubois, J. P., G. Blake, P. Gerbeaux & S. Jenser, 1984. Methodology for the study of the distribution of aquatic vegetation in the French alpine lakes. Verh. int. Ver. Limnol. 22: 1036–1039.

    Google Scholar 

  • Fassett, N. C., 1957. A Manual of Aquatic Plants. U. of Wisconsin Press, Madison, 405 pp.

    Google Scholar 

  • Filbin, G. J. & J. W. Barko, 1985. Growth and nutrition of submersed macrophytes in a eutrophic Wisconsin impoundment. J. Freshwat. Ecol. 3: 275–285.

    Google Scholar 

  • Filbin, G. J. & R. A. Hough, 1984. Extraction of 14C-labeled photosynthate from aquatic plants with dimethyl sulfoxide (DMSO). Limnol. Oceanogr. 29: 426–428.

    Google Scholar 

  • Fornwall, M. D., 1986. The influence of light and inorganic carbon on hydrophyte distribution within two interconnected southeastern Michigan lakes. Dissertation. Wayne State Univ., Detroit, 171 pp.

    Google Scholar 

  • Fox, D. J. & K. E. Guire, 1976. Documentation for MIDAS. Statistical Research Laboratory, University of Michigan, Ann Arbor, Michigan, USA.

    Google Scholar 

  • Gerloff, G. C. & P. H. Krombholz, 1966. Tissue analysis as a measure of nutrient availability for growth of angiosperm aquatic plants. Limnol. Oceanogr. 11: 529–537.

    Google Scholar 

  • Gleason, H. A. & A. Cronquist, 1963. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. D. Van Nostrand, Princeton, 810 pp.

    Google Scholar 

  • Goulder, R. & D. J. Boatman, 1971. Evidence that nitrogen supply influences the distribution of a freshwater macrophyte, Ceratophyllum demersum. J. Ecol. 59: 783–791.

    Google Scholar 

  • Grace, J. B. & R. G. Wetzel, 1981. Phenotypic and genotypic components of growth and reproduction in Typha latifolia: experimental studies in marshes of differing successional

  • Hutchinson, G. E., 1975. A Treatise on Limnology. III. Limnological Botany. John Wiley and Sons, New York, 660 pp.

    Google Scholar 

  • Jupp, B. P. & D. N. H. Spence, 1977. Limitation on macrophytes in a eutrophic lake, Loch Leven. I. Effects of phytoplankton. J. Ecol. 65: 175–186.

    Google Scholar 

  • Lachavanne, J. B., 1985. The influence of accelerated eutrophication on the macrophytes of Swiss lakes: Abundance and distribution. Verh. int. Ver. Limnol. 22: 2950–2955.

    Google Scholar 

  • Manny, B. A., R. G. Wetzel & R. E. Bailey, 1978. Paleolimnological sedimentation of organic carbon, nitrogen, phosphorus, fossil pigments, pollen, and diatoms in a hypereutrophic, hardwater lake: A case history of eutrophication. Pol. Arch. Hydrobiol. 25: 243–267.

    Google Scholar 

  • Misra, R. D., 1938. Edaphic factors in the distribution of aquatic plants in the English Lakes. J. Ecol. 26: 411–451.

    Google Scholar 

  • Morgan, N. C., 1970. Changes in the fauna and flora of a nutrient enriched lake. Hydrobiologia 35: 545–553.

    Article  Google Scholar 

  • Moss, B., 1976. The effects of fertilization and fish on community structure and biomass of aquatic macrophytes and epiphytic algae populations: An ecosystem experiment. J. Ecol. 64: 313–342.

    Google Scholar 

  • Mulligan, H. F. & A. Baranowski, 1969. Growth of phytoplankton and vascular aquatic plants at different nutrient levels. Verh. int. Ver. Limnol. 17: 802–810.

    Google Scholar 

  • Mulligan, H. F., A. Baranowski & R. Johnson, 1976. Nitrogen and phosphorus fertilization of aquatic vascular plants and algae in replicated ponds. I. Initial response to fertilization. Hydrobiologia 48: 109–116.

    Google Scholar 

  • Nichols, D. S. & D. R. Keeney, 1976. Nitrogen nutrition of Myriophyllum spicatum: variation of plant tissue nitrogen concentration with season and site in Lake Wingra. Freshwat. Biol. 6: 137–144.

    Google Scholar 

  • Nichols, S. A. & B. H. Shaw. 1986. Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus and Elodea canadensis. Hydrobiologia 131: 3–21.

    Article  Google Scholar 

  • Pearsall, W. H., 1920. The aquatic vegetation of the English Lakes. J. Ecol. 8: 163–199.

    Google Scholar 

  • Peltier, W. H. & E. B. Welch, 1969. Factors affecting the growth of rooted aquatic plants in a river. Weed Sci. 17: 412–416.

    Google Scholar 

  • Phillips, G. L., D. F. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.

    Article  Google Scholar 

  • Reed, C. F., 1977. History and distribution of Eurasian watermilfoil in United States and Canada. Phytologia 36: 416–436.

    Google Scholar 

  • Rickett, W. H., 1922. A quantitative study of the larger aquatic plants of Lake Mendota. Trans. Wisconsin Acad. Sci., Arts and Let. 20: 501–527.

    Google Scholar 

  • Rickett, W. H., 1924. A quantitative study of the large aquatic plants of Green Lake, Wisconsin. Trans. Wisconsin Acad. Sci., Arts and Let. 21: 381–414.

    Google Scholar 

  • Sand-Jensen, K. & M. Søndergaard, 1981. Phytoplankton and epiphyte development and their shading effect on submerged macrophytes in lakes of different nutrient status. Int. Revue ges. Hydrobiol. 66: 529–552.

    Google Scholar 

  • Saunders, G. W., F. B. Trama & R. W. Bachmann, 1962. Evaluation of a modified 14C technique for shipboard estimation of photosynthesis in large lakes. Pub. 8, Great Lakes Res. Div., U. of Michigan, Ann Arbor, 61 pp.

    Google Scholar 

  • Smart, R. M., 1980. Annual changes of nitrogen and phosphorus in two aquatic macrophytes (Nymphaea tuberosa and Ceratophyllum demersum). Hydrobiologia 70: 31–35.

    Article  Google Scholar 

  • Sneath, P. H. A. & R. R. Sokal, 1973. Numerical taxonomy. W. H. Freeman, San Francisco, 573 pp.

    Google Scholar 

  • Spence, D. N. H., 1982. The zonation of plants in freshwater lakes. In A. Macfadyen and E. D. Ford (ed.), Advances in Ecological Research. Academic Press, London: 37–125.

    Google Scholar 

  • Thompson, R. L., 1988. The role of nutrient availability in phytoplankton growth and community structure in a chain of lakes. Thesis. Wayne State University, Detroit, 69 pp.

    Google Scholar 

  • Toetz, D. W., 1971. Diurnal uptake of N03 and NH4 by a Ceratophyllum periphyton community. Limnol. Oceanogr. 16: 819–822.

    Google Scholar 

  • Westlake, D. F., 1975. Primary productivity of aquatic macrophytes. In E. Cooper (ed), Primary Productivity of Different Environments. IBP Programme Series No. 3, Cambridge University, Cambridge: 189–206.

    Google Scholar 

  • Wetzel, R. G., 1973. Productivity investigations of interconnected marl lakes. I. The eight lakes of the Oliver and Walters Chains, northeastern Indiana. Hydrobiol. Stud. 3: 91–143.

    Google Scholar 

  • Wetzel, R. G., 1979. The role of the littoral zone and detritus in lake metabolism. Arch. Hydrobiol. 13: 145–161.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. Saunders and Co., New York, 760 pp.

    Google Scholar 

  • Wetzel, R. G. & J. B. Grace, 1983. Aquatic plant communities, In E. R. Lemon (ed), CO2 and Plants: the Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. AAAS Selected Symposium 84, Westview Press Inc., Boulder: 223–280.

    Google Scholar 

  • Wetzel, R. G. & R. A. Hough, 1973. Productivity and role of aquatic macrophytes in lakes: An assessment. Pol. Arch. Hydrobiol. 20: 9–19.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1979. Limnological Analyses. Saunders and Co., New York, 357 pp.

    Google Scholar 

  • Wilson, L. R., 1935. Lake development and plant succession in Vilas County, Wisconsin. I. The medium hard water lakes. Ecol. Monogr. 5: 207–247.

    Google Scholar 

  • Wilson, L. R., 1941. The larger aquatic vegetation of Trout Lake, Vilas County, Wisconsin. Trans. Wisconsin Acad. Sci., Arts and Let. 33: 135–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hough, R.A., Fornwall, M.D., Negele, B.J. et al. Plant community dynamics in a chain of lakes: principal factors in the decline of rooted macrophytes with eutrophication. Hydrobiologia 173, 199–217 (1989). https://doi.org/10.1007/BF00008968

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008968

Key words

Navigation