Advertisement

Hydrobiologia

, Volume 128, Issue 1, pp 91–95 | Cite as

Use of 35S to determine the influence of Hexagenia on sulfur cycling in lake sediments

  • G. B. Lawrence
  • M. J. Mitchell
Article

Abstract

Radioactive sulfate (35SO4) was added to the overlying water of lake sediment microcosms to determine the effect of the burrowing mayfly nymph, Hexagenia, on sulfur transformations and fluxes. Hexagenia increased the rate of 35SO4 incorporation into the sediment and the rate at which 35SO4 was biologically assimilated. In addition, 35SO4 approached a steady-state condition with non-radioactive sulfur pools more rapidly in microcosms containing Hexagenia than in reference microcosms. Results indicate that Hexagenia enhance rates of sulfur cycling which may alter sediment acid-base chemistry and redox potential.

Keywords

Hexagenia Sulfur Bioturbation Sediment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aller, R. C. & J. Y. Yingst, 1978. Biogeochemistry of tubedwellings: a study of the sedentary polychaete Amphritrite ornata. J. mar. Res. 36: 201–254.Google Scholar
  2. Chatarpaul, L., J. B. Robinson & N. K. Kaushik, 1980. Effects of tubificid worms on denitrification and nitrification in stream sediment. Can. J. Fish. aquat. Sci. 37: 656–663.Google Scholar
  3. Davis, R. B., 1974. Tubificids alter profiles of redox potential and pH in profundal lake sediment. Limnol. Oceanogr. 19: 342–346.Google Scholar
  4. Edmunds, G. F., S. L. Jensen & L. Berner, 1976. The mayflies of North and Central America. University of Minnesota Press, Minneapolis, 330 pp.Google Scholar
  5. Gallep, G. W., 1979. Chironomid influence on phosphorus release in sediment-water microcosms. Ecology 60: 547–556.Google Scholar
  6. Graneli, G. W., 1979. The influence of Chironomus plumosus larvae on the exchange of dissolved substances between sediment and water. Hydrobiologia 66: 149–159.CrossRefGoogle Scholar
  7. Hunt, B. P., 1953. The life history and economic importance of a burrowing mayfly, Hexagenia limbata, in southern Michigan lakes. Bull. Inst. Fish. Res. No. 4, Mich. Dept. of Cons., 151 pp.Google Scholar
  8. Landers, D. H., M. J. Mitchell & M. B. David, 1983. Analysis of organic and inorganic sulfur constituents in sediments, soils and water. Int. J. envir. Anal. Chem. 14: 245–256.Google Scholar
  9. Lawrence, G. B., M. J. Mitchell & D. H. Landers, 1982. Effects of the burrowing mayfly, Hexagenia, on nitrogen and sulfur fractions in lake sediment microcosms. Hydrobiologia 87: 273–283.Google Scholar
  10. Mitchell, M. J., D. H. Landers & D. F. Brodowski, 1981. Sulfur constituents of sediment and their relationship to lake acidification. Wat. Air Soil Pollut. 16: 177–186.CrossRefGoogle Scholar
  11. Mitchell, M. J., D. H. Landers, D. F. Brodowski, G. B. Lawrence & M. B. David, 1984. Organic and inorganic sulfur constituents of the sediments of three New York Lakes: effect of site, sediment depth and season. Wat. Air. Soil. Pollut. 21: 231–245.CrossRefGoogle Scholar
  12. Uutala, A., 1982. Composition and production of the zoobenthos community in three New York lakes, with emphasis on Chironomidae (Diptera). M. Sci. Thesis, St. Univ., N.Y. Coll. envir. Sci. For. 131 pp.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • G. B. Lawrence
    • 1
  • M. J. Mitchell
    • 2
  1. 1.Department of Civil Engineering, 152 Hinds HallSyracuse UniversitySyracuseUSA
  2. 2.Department of Environmental and Forest BiologyS.U.N.Y. College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations