Skip to main content
Log in

Distribution of benthic algae and macroinvertebrates along a thermal stream gradient

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The distribution and abundance of benthic algae and macroinvertebrates were examined along a natural thermal gradient formed by hot springs in Little Geysers Creek, Sonoma Co., California, USA. Maximum water temperatures ranged from 52 °C at the uppermost station to 23 °C at a station 400 m downstream. Benthic chlorophyll a decreased exponentially from 2.5 g m−2 at 52 °C to less than 0.1 g m−2 at 23 °C, a pattern of decline also exhibited by algal phaeophytin. Blue-green algae dominated at higher temperatures but were replaced by filamentous green algae and diatoms at lower temperatures.

Macroinvertebrates were absent at temperatures ⩾45 °C; the highest density (> 150 000 m−2, mainly Chironomidae) occurred at 34 °C, whereas biomass was highest (4.6 g m−2, as dry weight) at 23 °C and species richness (15 species) was highest at 27 °C. The two predominant macroinvertebrate populations (the midge Tanytarsus sp. and the caddisfly Helicopsyche borealis) occurred at sites that were several degrees below their lethal thermal threshold, suggesting that a temperature ‘buffer’ is maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton, D. R. & M. A. Lock, 1979. Numerical abundance and biomass of bacteria, algae and macrobenthos of a large Northern river, the Athabasca. Int. Revue ges. Hydrobiol. 64: 345–359.

    Google Scholar 

  • Brock, T. D., 1967. Relationship between standing crop and primary productivity along a hot spring thermal gradient. Ecology 48: 566–571.

    Google Scholar 

  • Brock, T. D., 1970. High temperature systems. Annu. Rev. Ecol. Syst. 1: 191–220.

    Article  Google Scholar 

  • Brock, T. D., 1978. Thermophilic microorganisms and life at high temperatures. Springer-Verlag, N.Y., 465 pp.

    Google Scholar 

  • Brues, C. T., 1924. Observations on animal life in the thermal springs of Yellowstone Park, with a consideration of the thermal environment. Proc. am. Acad. Arts Sci. 63: 371–437.

    Google Scholar 

  • Brues, C. T., 1928. Studies on the fauna of hot springs in the western United States and the biology of thermophilic animals. Proc. am. Acad. Arts Sci. 63: 139–228.

    Google Scholar 

  • Castenholz, R. W., 1969. The thermophilic cyanophytes of Iceland and the upper temperature limit. J. Phycol. 5: 360–368.

    Google Scholar 

  • Castenholz, R. W., 1972. Low temperature acclimation and survival in the thermophilic Oscillatoria terebriformis. In T. V. Desikachary (ed.), Taxonomy and Biology of Blue-green Algae. University of Madras, India: 406–418.

    Google Scholar 

  • Castenholz, R. W., 1976. The effect of sulfide on the bluegreen algae of hot springs, 1. New Zealand and Iceland. J. Phycol. 12: 54–68.

    Google Scholar 

  • Castenholz, R. W., 1978. The biogeography of hot spring algae through enrichment cultures. Mitt. int. Ver. Limnol. 21: 296–315.

    Google Scholar 

  • Collins, N. C., R. Mitchell & R. G. Wiegert, 1976. Functional analysis of a thermal spring ecosystem, with an evaluation of the role of consumers. Ecology 57: 1221–1232.

    Google Scholar 

  • Cox, G. W., 1980. Laboratory manual of general ecology, 3rd Edn. W. E. Brown, Dubuque, IA, 275 pp.

    Google Scholar 

  • deKozlowski, S. J. & D. L. Bunting, II, 1981. A laboratory study on the thermal tolerance of four southeastern stream insect species (Trichoptera, Ephemeroptera). Hydrobiologia 79: 141–145.

    Article  Google Scholar 

  • Enriquez, L. A., 1978. Geysers unit 18 site specific studies: description of water quality characteristics. Pacif. Gas elect. Co., Dep. Engng Res. Rep. 411–77.73, S. Ramon, CA, 38 pp.

    Google Scholar 

  • Feldmeth, C. R., 1981. The evolution of thermal tolerance in desert pupfish (genus Cyprinodon). In R. J. Naiman & D. L. Soltz (ed), Fishes in North American Deserts. J. Wiley & Sons, N.Y.: 357–384.

    Google Scholar 

  • Fraleigh, P. C. & R. G. Wiegert, 1975. A model explaining successional change in standing crop of thermal blue-green algae. Ecology 56: 656–664.

    Google Scholar 

  • Gilbert, D. A., 1981. The Geysers unit 20 site specific water quality investigation. Pacif. Gas elect. Co., Dep. Engng Res. Rep. 411–81.257, S. Ramon, CA, 40 pp.

    Google Scholar 

  • Hein, M. K. & J. D. Koppen, 1979. Effects of thermally elevated discharges on the structure and composition of estuarine periphyton diatom assemblages. Estuar. coast. mar. Sci. 9: 385–401.

    Article  Google Scholar 

  • Lamberti, G. A. & J. W. Moore, 1984. Aquatic insects as primary consumers. In V. H. Resh & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publishers, N.Y.: 164–195.

    Google Scholar 

  • Lamberti, G. A. & V. H. Resh, 1983a. Geothermal effects on stream benthos: separate influences of thermal and chemical components on periphyton and macroinvertebrates. Can. J. Fish. aquat. Sci. 40: 1995–2009.

    Google Scholar 

  • Lamberti, G. A. & V. H. Resh, 1983b. Stream periphyton and insect herbivores: an experimental study of grazing by a caddisfly population. Ecology 64: 1124–1135.

    Google Scholar 

  • Lamberti, G. A. & V. H. Resh, 1985. Comparability of introduced tiles and natural substrates for sampling lotic bacteria, algae, and macroinvertebrates. Freshwat. Biol. 15: 21–30.

    Google Scholar 

  • Matthews, W. J. & J. D. Maness, 1979. Critical thermal maxima, oxygen tolerances and success of cyprinid fishes in a southwestern river. Am. Midl. Nat. 102: 374–377.

    Google Scholar 

  • Mitchell, R., 1974. The evolution of thermophily in hot springs. Q. Rev. Biol. 49: 229–242.

    Article  Google Scholar 

  • Moore, L. F., 1978. Attached algae at thermal generating stations — the effect of temperature on Cladophora. Verh. int. Ver. Limnol. 20: 1727–1733.

    Google Scholar 

  • Moss, B., 1967a. A spectrophotometric method for the estimation of percentage degradation of chlorophylls to pheo-pigments in extracts of algae. Limnol. Oceanogr. 12: 335–340.

    Google Scholar 

  • Moss, B., 1967b. A note on the estimation of chlorophyll a in freshwater algal communities. Limnol. Oceanogr. 12: 340–342.

    Google Scholar 

  • Nichols, S. J., 1981. Effect of thermal effluents on oligochaetes in Keowee Reservoir, South Carolina. Hydrobiologia 79: 129–136.

    Article  Google Scholar 

  • Paladino, F. V., J. R. Spotila, J. P. Schubauer & K. T. Kowalski, 1980. The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fishes. Revue Can. Biol. 39: 115–122.

    Google Scholar 

  • Rasmussen, J. B., 1982. The effect of thermal effluent, before and after macrophyte harvesting, on standing crop and species composition of benthic macroinvertebrate communities in Lake Wabamun, Alberta. Can. J. Zool. 60: 3196–3205.

    Google Scholar 

  • Resh, V. H. & M. A. Barnby, 1984. Distribution of shore bugs and brine flies at Sylvan Springs, Yellowstone National Park. Gt Basin Nat. 44: 99–103.

    Google Scholar 

  • Resh, V. H., G. A. Lamberti & J. R. Wood, 1984. Biological studies of Helicopsyche borealis (Hagen) in a coastal California stream. Ser. Ent. 30: 315–319.

    Google Scholar 

  • Robinson, W. H. & E. C. Turner, Jr., 1975. Insect fauna of some Virginia thermal streams. Proc. ent. Soc. Wash. 77: 391–398.

    Google Scholar 

  • Stockner, J. G., 1967. Observations of thermophilic algal communities in Mount Rainier and Yellowstone National Parks. Limnol. Oceanogr. 12: 13–17.

    Google Scholar 

  • Wickstrom, C. E. & R. G. Wiegert, 1980. Response of thermal algal-bacterial mat to grazing by brine flies. Microb. Ecol. 6: 303–315.

    Article  Google Scholar 

  • Wiegert, R. G. & P. C. Fraleigh, 1972. Ecology of Yellowstone thermal effluent systems: net primary production and species diversity of a successional blue-green algal mat. Limnol. Oceanogr. 17: 215–228.

    Google Scholar 

  • Wiggins, G. B., 1977. Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press, Downsview, Ontario, 401 pp.

    Google Scholar 

  • Wilde, E. W. & L. J. Tilly, 1981. Structural characteristics of algal communities in thermally altered artificial streams. Hydrobiologia 76: 57–63.

    Article  Google Scholar 

  • Williams, D. D., A. T. Read & K. A. Moore, 1983. The biology and zoogeography of Helicopsyche borealis (Trichoptera: Helicopsychidae): a Nearctic representative of a tropical genus. Can. J. Zool. 61: 2288–2299.

    Google Scholar 

  • Winterbourn, M. J. 1969. The distribution of algae and insects in hot spring thermal gradients at Waimunga, New Zealand. New Zealand J. mar. Freshwat. Res. 3: 459–465.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamberti, G.A., Resh, V.H. Distribution of benthic algae and macroinvertebrates along a thermal stream gradient. Hydrobiologia 128, 13–21 (1985). https://doi.org/10.1007/BF00008935

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008935

Keywords

Navigation