Skip to main content
Log in

A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Résumé

La vision classique des limnologistes fut de considérer les interactions entre les composants des écosystèmes lacustres comme un flux d'influence unidirectionnel des sels nutritifs vers le phytoplancton, le zooplancton, et finalement les poissons, par l'intermédiaire de processus de contrôle successivement physiques, chimiques, puis biologiques (Straškraba, 1967). L'effet exercé par les poissons planctophages sur les communautés zoo- et phytoplanctoniques ne fut reconnu qu'à partir des travaux de Hrbáček et al. (1961), Hrbáček (1962), Brooks & Dodson (1965), et Straškraba (1965). Ces auteurs montrèrent (1) que dans les étangs et lacs en présence de poissons planctophages prédateurs visuels, les communautés zooplanctoniques étaient composées d'espèces de plus petites tailles que celles présentes dans les milieux dépourvus de planctophages et, (2) que les communautés zooplanctoniques résultantes, composées d'espèces de petites tailles, influençaient les communautés phytoplanctoniques. Bien que la variabilité de la réponse du phytoplancton à la prédation par les poissons révèle l'importance d'autres facteurs (tels que la limitation en sels nutritifs et la compétition interspécifique des algues), ces travaux démontrèrent que les communautés zoo- et phytoplanctoniques pouvaient effectivement être affectées par l'alimentation sélective des poissons planctophages. Pendant les deux dernières décennies, de nombreux travaux en limnologie se sont concentrés sur cet impact radical des poissons sur les communautés planctoniques. La réponse directe des communautés zooplanctoniques à la prédation visuelle des poissons planctophages (appelés en anglais ‘particulate feeders’) a suscité un interérêt tout particulier, alors que les effets multiniveaux causés par les poissons planctophages filtreurs (prédation sur le zooplancton plus broutage du phytoplancton) ont été plus rarement abordés. Les objectifs de cette révision sont de documenter les inter-relations poissons-plancton, afin (1) d'obtenir des éléments d'appréciation de l'impact des poissons sur les communautés planctoniques, et (2) d'établir des modèles mécanistiques d'alimentation planctophage tenant compte du répertoire alimentaire et de la sélectivité du poisson, des répones adaptatives du plancton, et des conditions du milieu.

L'approche utilisée ici est basée sur des résultats expérimentaux de terrain et de laboratoire provenant de la littérature concernant les systèmes tropicaux et tempérés d'eau douce (parfois marine). Quatre groupes de poissons planctophages sont distingués: les prédateurs visuels limités par la taille de leur bouche (c'est-à-dire les larves et les espèces de petites tailles: ‘gape-limited predators’), les prédateurs visuels proprement dit (‘particulate feeders’), les filtreurs par pompage (‘pump filter feeders’), et les filtreurs par dĺacement (‘tow-net filter feeders’). Pour chaque groupe, les mécanismes de sélection des proies sont analysés, aussi bien du point de vue du prédateur que de la proie. Afin de rechercher les mécanismes déterminant la sélectivité alimentaire du prédateur et de discuter ses effets potentiels sur les commurlautés de proies, l'acte de prédation est décompóse en une séquence d'évènements successifs (Holling, 1966): la détection, la poursuite, la capture, la rétention et la digestion pour les prédateurs visuels; et la capture, la rétention et la digestion pour les filtreurs. Les avantages et les inconvénients de plusieurs mesures de sélectivité (appélées indices d'électivité), aussi bien que leur utilisation appropriée sont discutés. Les modèles de sélection de proies et les théories de recherche optimale sont analysés pour les différents modes d'alimentation des planctophages. Des modèles mécanistiques basés sur l'approche de Holling (loc. cit.) sont proposés pour chaque mode d'alimentation afin de déterminer les vulnerabilités différentielles des proies et l'amplitude optimale de la diète.

Cette révision concerne les domaines de l'écologie générale, de la limnologie, de l'aménagement des pêcheries (tel que, par exemple, l'utilisation des ressources planctoniques, le repeuplement, l'introduction, ou le maintien de populations naturelles de poissons), et du contrôle biologique des processes d'eutrophisation (approches par biomanipulation). Elle insiste sur le réel besoin de connaissances sur la sélectivité alimentaire et l'utilisation de la nourriture par les poissons planctophages. Elle permet de conclure que prédateurs et proies sont intimement et mutuellement adaptés. Aussi, dans la plupart des cas, il apparait peu approprié d'aborder la dynamique du plankton et la qualité des eaux sans tenir compte de l'estimation des pressions de prédation et de broutage exercées par les poissons planctophages.

Abstract

The classical approach of limnologists has been to consider the interactions between lake ecosystem components as an unidirectional flow of influence from nutrients to the phytoplankton, to the zooplankton, and finally to the fish, through successive controls by physical, chemical, and biological processes (Straškraba, 1967). The effect of planktivorous fishes on zooplankton and phytoplankton communities was not recognized until the studies of Hrbáček et al. (1961), Hrbáček (1962), Brooks & Dodson (1965) and Straškraba (1965). They showed that (1) in ponds and lakes in the presence of planktivorous fishes the zooplankton communities were composed of smaller bodied species than in those lacking planktivores, and (2) the resulting small-bodied zooplankton communities affected the phytoplankton communities. Although the variability of the phytoplankton response to fish predation showed the importance of other factors (such as nutrient limitation and interspecific competition of algae), these studies emphasized that zooplankton and phytoplankton communities can be affected by the feeding selectivity of planktivorous fishes. During the last two decades, many limnological studies have focused on this dramatic impact of fish on plankton communities. The direct response of zooplankton communities to visual fish predation (i.e. particulate feeding) has been of major interest, whereas the multilevel effects of filter-feeding fish (predation on zooplankton plus grazing on phytoplankton) have been neglected. The objectives of this review are to document fish-plankton interrelationships in order to (1) provide insights into the impact of fish on plankton communities, and (2) outline mechanistic models of planktivory according to the feeding repertory and the selectivity of the fish, the adaptive responses of the plankton, and the environmental conditions.

The approach adopted here is based on field and laboratory experimental results derived from the literature on tropical and temperate freshwater (occasionally marine) systems. Four types of planktivorous fish are distinguished: the gape-limited larvae and small fish species, the particulate feeders, the pump filter feeders, and the tow-net filter feeders. For each type of planktivore, the mechanisms of prey selection are analyzed from the point of view of both the predator and the prey. To investigate the main determinants of the predator feeding selectivity, and to discuss its potential effects on prey communities, the predation-act is divided into a sequence of successive events (Holling, 1966): detection, pursuit, capture, retention, and digestion for particulate feeders; and capture, retention, and digestion for filter feeders. The strengths and weaknesses of various measures of selectivity (i.e. electivity indices), as well as their appropriate usages are considered. Available prey selection models and optimal foraging theories are analyzed for the different planktivore feeding modes. Mechanistic models based on Holling's (loc. cit.) approach are proposed for each feeding mode to determine differential prey vulnerabilities and optimal diet breadth.

This review has application to several fields, including general ecology, limnology, fisheries management (for example, utilization of planktonic resources, stocking, introduction, or maintenance of natural fish populations), and biological control of the eutrophication processes (biomanipulation approaches). It emphasizes the real need for more knowledge of the feeding selectivity and food utilization of planktivores. It concludes that predator and prey are mutually adapted. Thus, in most cases, study of plankton dynamics and water quality should include the assessment of fish predation and grazing pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ahlgren, I., 1978. Response of Lake Norrviken to reduced nutrient loading. Verh. int. Ver. Limnol. 20: 846–850.

    Google Scholar 

  • Allan, J. D., 1974. Balancing predation and competition in cladocerans. Ecology 55: 622–629.

    Google Scholar 

  • Allan, J. D., 1976. Life history patterns in zooplankton. Am. nat. 110: 165–180.

    Google Scholar 

  • Alexander, R. McN., 1967a. The functions and mechanisms of the protrusible upper jaws of some acanthopterygian fish. J. Zool., Lond. 151: 43–64.

    Google Scholar 

  • Alexander, R. McN., 1967b. Functional design in fishes. Hutchinson University Library, 160 pp.

  • Almquist, Z., 1959. Observations of the effect of rotenone emulsives on fish food organisms. Inst. Freshw. Res. Drottningholm 40: 146–160.

    Google Scholar 

  • Anderson, R. S., 1968. A preliminary report on zooplankton distribution and predatory-prey relationships in Alpine lakes. Can. Wildlife Service, Limnol. Sect. Rep., 31 pp.

  • Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59(1): 9–15.

    Google Scholar 

  • Andrusak, H. & T. G. Northcote, 1971. Segregation between adult cutthroat trout (Salmo clarki) and dolly varden (Salvelinus malma) in small coastal British Columbia lakes. J. Fish. Res. Bd Can. 28: 1259–1268.

    Google Scholar 

  • Arthur, D. K., 1976. Food and feeding of larvae of three fishes occurring in the California Current, Sardinops sagax, Engraulis mordax and Trachurus symmetricus. Fish. Bull. U.S.A. 74: 517–530.

    Google Scholar 

  • Bainbridge, V., 1957. Food of Ethmalosa dorsalis (Cuvier and Valenciennes). Nature, Lond. 179: (456S): 874–875.

    Google Scholar 

  • Bainbridge, V., 1963. The food, feeding habitats and distribution of the bonga, Ethmalosa dorsalis (Cuvier and Valenciennes). J. Cons. perm. int. Explor. Mer 28: 270–284.

    Google Scholar 

  • Bakule, L. & M. Straškraba, 1982. On multiple objective optimization in aquatic ecosystems. Ecol. Modelling 17: 75–82.

    Google Scholar 

  • Banse, K., 1976. Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size — a review. J. Phycol. 12: 135–140.

    Google Scholar 

  • Barger, L. E. & R. V. Kilambi, 1980. Feeding ecology of larval shad, Dorosoma, in Beavor reservoir, Arkansas. In Proceedings of the Fourth Annual Larval Fish Conference. United States Fish and Wildlife Service, FWS/OBS-80/43, Ann. Arbor, Michigan, USA: 136–145.

    Google Scholar 

  • Bayliff, W. H., 1963. The food and feeding habits of the anchoveta Cetengraulis mysticetus, in the Gulf of Panama. Bull. inter. Amer. Trop. Tina Comm. 7: 399–459.

    Google Scholar 

  • Begg, G. W., 1976. The relationships between the diurnal movements of some of the zooplankton and the sardine Limnothrissa miodon in Lake Kariba, Rhodesia. Limnol. Oceanogr. 21: 521–539.

    Google Scholar 

  • Bensam, P., 1964. Differences in the food and feeding adaptations between juveniles and adults of the Indian oil sardine, Sardinella longiceps Valenciennes. Indian J. Fish. 11: 377–390.

    Google Scholar 

  • Berg, A. & E. Grimaldi, 1966. Ecological relationships between planktophagic fish species in the Lago Maggiore. Verh. int. Ver. Limnol. 16: 1065–1073.

    Google Scholar 

  • Berry, F. H. & I. Barret, 1963. Gill raker analysis and speciation in the thread herring genus Opisthonema. Bull. inter. Amer. Trop. Tuna Comm. 7: 113–186.

    Google Scholar 

  • Bertmar, G. & C. Stromberg, 1969. The feeding mechanisms in plankton eaters. I. The epibranchial organ in whitefish. Mar. Biol. 3: 107–109.

    Google Scholar 

  • Beukema, J. J., 1968. Predation by the three-spined stickleback (Gasterosteus aculeatus L.): the influence of hunger and experience. Behaviour 31: 1–126.

    Google Scholar 

  • Bhimachar, B. S., F. A. Sc. George & P. C. George, 1960. Observations on the food and feeding of the Indian mackeral, Rastrelliger kanagurta (Cuvier). Indian J. Fish. 7: 275–306.

    Google Scholar 

  • Bigelow, H. B. & W. F. Schroeder, 1953. Fishes of the Gulf of Maine. Fish. Bull. U.S.A. 53: 1–577.

    Google Scholar 

  • Blaber, S. J. M., 1979. The biology of filter-feeding teleosts in Lake St. Lucia, Zululand. J. Fish. Biol. 15: 37–59.

    Google Scholar 

  • Blaxter, J. H. S., 1966. The behavior and physiology of herring and other clupeids. In: F. S. Russel (ed.), Advances in Marine Biology. Academic Press, New York 1: 261–393.

    Google Scholar 

  • Bond, C. E., 1979. Biology of fishes. Saunders College Publishing, Philadelphia, 514 pp.

    Google Scholar 

  • Boruckij, E. V., 1973. Feeding of Hypophthalmichthys molitrix (Val.) and Aristichthys nobilis (Val.) in natural waters of Soviet Union. [Pitanie belogo (Hypophthalmichthys molitrix (Val.)) i pestrogo (Aristichthys nobilis (Val.)) tolstolobikov v estestvennych vodoemach i prudach SSSR] In: G. V. Nikolskij & P. L. Piroznikov (eds), Trofologia vodnych zivotnych. Itogi i zadaci. Izdattelstvo ‘Nauka’, Moskva: 299–322.

    Google Scholar 

  • Bowen, S. H., 1976. Mechanism for digestion of detrital bacteria by the cichild fish Sarotherodon mossambicus (Peters). Nature, Lond. 260: 137–138.

    Google Scholar 

  • Bowen, S. H., 1982. Feeding, digestion and growth — qualitative considerations. In: R. S. V. Pullin & R. H. LoweMcConnell (eds), The Biology and Culture of Tilapias. ICLARM Conference Proceedings 7, 432 pp. International Center for Living Aquatic Resources Management, Manila, Phillippines: 141–156.

    Google Scholar 

  • Boyd, C. M., 1976. Selection of particle sizes by filter-feeding copepods: a plea for reason. Limnol. Oceanogr. 21: 175–180.

    Google Scholar 

  • Breder, C. M., 1959. Studies on social groupings in fishes. Bull. am. Mus. nat. Hist. 117: 393–482.

    Google Scholar 

  • Brock, V. E. & R. H. Riffenburgh, 1960. Fish schooling: a possible factor in reducing predation. J. Cons. perm. int. Explor. Mer 25: 307–317.

    Google Scholar 

  • Brooks, J. L., 1968. The effects of prey size selection by lake planktivores. Syst. Zool. 17: 272–291.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and the composition of plankton. Sciences 150: 26–35.

    Google Scholar 

  • Carliste, J. G., 1971. Food of the jack mackeral, Trachurus symmetricus. Calif. Fish and Game 57: 205–208.

    Google Scholar 

  • Carlson, R. E. & S. E. Schoenberg, 1983. Controlling blue-green algae by zooplankton grazing. In: Lake restoration, protection, and management. II Annual Conference of the North American Lake Management Society, Vancouver, British Columbia, October 26–29, 1982, EPA 440/5-83-001: 228–233.

  • Caulton, M. S., 1976. The importance of pre-digestive food preparation to Tilapia rendalli Boulanger when feeding on aquatic macrophytes. Trans. Rhod. Sci. Assoc. 57: 22–28.

    Google Scholar 

  • Charnov, E. L., 1973. Optimal foraging: some theoretical explorations. Ph.D. Thesis, Univ. Washington, Seattle, 95 pp.

    Google Scholar 

  • Charnov, E. L., 1976. Optimal foraging: The marginal value theorem. Theoretical Population Biology 9: 129–136.

    Google Scholar 

  • Charnov, E. L. & G. H. Orians, 1979. Optimal foraging: some theoretical explorations. Center for Quantitative Sciences, Univ. of Washington, Seattle 98195, USA, 160 pp.

    Google Scholar 

  • Chesson, J., 1978. Measuring preference in selective predation. Ecology 59: 211–215.

    Google Scholar 

  • Chipman, W. C., 1959. The use of radioisotopes in studies of the foods and feeding activities of marine animals. Publ. Staz. Zool. Napoli (Suppl.) 31: 154–174.

    Google Scholar 

  • Clemens, W. A. & N. K. Bigelow, 1922. The food of ciscoes (Leucichthys) in Lake Erie. Publ. Ontario Fish. Res. Lab. 3: 39–53 (Univ. Toronto Stud. Biol. Ser. no 20).

    Google Scholar 

  • Colby, P. J., G. R. Spangler, D. A. Hurley & A. M. McCombie, 1972. Effects of eutrophication on salmonid communities in oligotrophic lakes. J. Fish. Res. Bd Can. 29: 975–983.

    Google Scholar 

  • Colin, P. L., 1976. Filter feeding and predation on the eggs of Thallasoma sp. by the scombrid fish Rastrelliger kanagurta. Copeia: 596–597.

  • Confer, J. L. & P. I. Blades, 1975. Omnivorous zooplankton and planktivorous fish. Limnol. Oceanogr. 20: 571–579.

    Google Scholar 

  • Confer, J. L., G. Applegate & C. A. Evanik, 1980. Selective predation by zooplankton and the response of cladoceran eyes to light. In: W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The Univ. Press of New England, Hanover, New Hampshire, USA: 604–608.

    Google Scholar 

  • Confer, J. L., G. L. Howick, M. H. Corzette, S. L. Kramer, S. Fitzgibbon & R. Landesberg, 1978. Visual predation by planktivores. Oikos 31: 27–37.

    Google Scholar 

  • Contag, E., 1931. Der Einfluss verschiedener Besatzstarke auf die naturliche Ernahrung zweisommriger Karpfen und auf die Zusammensetzung der Tierwelt ablassbarer Teiche. Z. Fischerei 29: 569–597.

    Google Scholar 

  • Cronberg, G., 1980. Phytoplankton changes in Lake Trummen induced by restoration. Long-term whole-lake studies and experimental biomanipulation. Ph.D. Thesis, Univ. of Lund.

  • Crowder, L. B., 1985. Optimal foraging and feeding mode shifts in fishes. Envir. Biol. Fishes 12(1): 57–62.

    Google Scholar 

  • Crowder, L. B. & F. P. Binkowski, 1983. Foraging behaviors and the interactions of alewife, Alosa pseudoharengus, and bloater, Coregonus hoyi. Envir. Biol. Fishes 8(2): 105–113.

    Google Scholar 

  • D'Ancona, V. & L. Volterra D'Ancona, 1937. Experienze in natura sul plankton del Lago di Nemi. Int. Revue ges. Hydrobiol. 35: 467–482.

    Google Scholar 

  • Davis, W. P. & R. S. Birdsong, 1973. Coral reef fishes which forage in the water column. Helgolander wiss. Meeresunters. 24: 292–306.

    Google Scholar 

  • Dawidowicz, P. & M. Gliwicz, 1983. Food of brook charr in extreme oligotrophic conditions of an alpine lake. Envir. Biol. Fishes 8(1): 55–60.

    Google Scholar 

  • Dawidowicz, P. & J. Pijanowska, 1984. Population dynamics in cladoceran zooplankton in the presence and absence of fishes. J. Plankton Res. 6(6): 953–959.

    Google Scholar 

  • De Bernardi, R. & G. Giussani, 1975. Population dynamics of three cladocerans of Lago Maggiore related to the predation pressure by planktophagous fish. Verh. int. Ver. Limnol. 19: 2906–2912.

    Google Scholar 

  • Didday, R. L., 1976. A model of visuomotor mechanisms in the frog optic tectum. Math. Biosci. 30: 169–180.

    Google Scholar 

  • Drenner, R. W., 1977. The feeding mechanics of the gizzard shad (Dorosoma cepedianum). Ph.D. Thesis, Univ. Kansas, Lawrence, 91 pp.

    Google Scholar 

  • Drenner, R. W. & S. R. McComas, 1980. The role of zooplankter escape ability in the selective feeding and impact of planktivorous fish. In: W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The Univ. Press of New England, Hanover, New Hampshire, USA: 587–593.

    Google Scholar 

  • Drenner, R. W., F. de Noyelles Jr. & D. Kettle, 1982a. Selective impact of filter-feeding gizzard shad on zooplankton community structure. Limnol. Oceanogr. 27: 965–968.

    Google Scholar 

  • Drenner, R. W., W. J. O'Brien & J. R. Mummert, 1982b. Filter-feeding rates of gizzard shad. Trans. am. Fish. Soc. 111: 210–215.

    Google Scholar 

  • Drenner, R. W., J. R. Strickler & W. J. O'Brien, 1978. Capture probability. The role of zooplankter escape in the selective feeding of planktivorous fish. J. Fish. Res. Bd Can. 34: 1370–1373.

    Google Scholar 

  • Drenner, R. W., J. R. Mummert, F. de Noyelles Jr. & D. Kettle, 1984a. Selective particle ingestion by a filter-feeding fish and its impact on phytoplankton community structure. Limnol. Oceanogr. 29(5): 941–948.

    Google Scholar 

  • Drenner, R. W., S. B. Taylor, X. Lazzaro & D. Kettle, 1984b. Particle grazing and plankton community impact of an omnivorous cichlid. Trans. am. Fish. Soc. 113: 397–402.

    Google Scholar 

  • Drenner, R. W., G. L. Vinyard, M. Gophen & S. R. McComas, 1982c. Feeding behavior of the cichlid, Sarotherodon galilaeum: Selective predation on Lake Kinneret zooplankton. Hydrobiologia 87: 17–20.

    Google Scholar 

  • Dunbrack, R. L. & L. M. Dill, 1984. Three-dimensional prey reaction field of the juvenile coho salmon (Oncorhynchus kisutch). Can. J. Fish. aquat. Sci. 41: 1176–1182.

    Google Scholar 

  • Durbin, A. G., 1979. Food selection by plankton feeding fishes. In: R. H. Stroud & M. Clepper (eds), Predator-Prey Systems in Fisheries Management. International Symposium on Predator-Prey Systems in Fish Communities and their Role in Fisheries Management. Atlanta, Georgia, July 24–27, 1978. Sport Fishing Institute, Washington D.C., 4: 203–218.

    Google Scholar 

  • Durbin, A. G. & E. G. Durbin, 1975. Grazing rates of the Atlantic menhaden as a function of particle size and concentration. Mar. Biol. 33: 265–277.

    Google Scholar 

  • Edmondson, W. T., 1977. Trophic equilibrium of Lake Washington. U.S. Environmental Protection Agency EPA-600/3-77.087.

  • Edmondson, W. T. & G. G. Winberg (eds.), 1971. A manual on methods for the assessment of secondary productivity in fresh waters. IBP Handbook no. 17, Blackwell, Oxford, 368 pp.

    Google Scholar 

  • Eggers, D. M., 1976. Theoretical effect of schooling by planktivorous fish predators on rate of prey consumption. J. Fish. Res. Bd Can. 33: 1964–1971.

    Google Scholar 

  • Eggers, D. M., 1977. The nature of prey selection by planktivorous fish. Ecology 58: 46–59.

    Google Scholar 

  • Eggers, D. M., 1978. Limnetic feeding behavior of juvenile sockeye salmon in Lake Washington and predator avoidance. Limnol. Oceanogr. 23: 1114–1125.

    Google Scholar 

  • Eggers, D. M., 1982. Planktivore preference by prey size. Ecology 63(2): 381–390.

    Google Scholar 

  • Elliot, G. V., 1976. Diel activity and feeding of schooled largemouth bass fry. Trans. am. Fish. Soc. 105(5): 624–627.

    Google Scholar 

  • Engel, S. S., 1976. Food habits and prey selection of Coho salmon (Oncorhynchus kisutch) and cisco (Coregonus artedii) in Palette Lake, Wisconsin. Trans. am. Fish. Soc. 105: 607–614.

    Google Scholar 

  • Fagade, S. O. & C. I. O. Olanyan, 1972. The biology of West African shad, Ethmalosa fimbriata (Bowdich) in the Lagos Lagoon, Nigeria. J. Fish. Biol. 4(4): 519–533.

    Google Scholar 

  • Feller, R. J. & V. M. Kaczynski, 1975. Size selective predation by juvenile Chum Salmon (Oncorhynchus keta) on epibenthic prey in Puget Sound. J. Fish. Res. Bd Can. 32: 1419–1429.

    Google Scholar 

  • Flemminger, A. & R. I. Clutter, 1965. Avoidance of towed nets by zooplankton. Limnol. Oceanogr. 10: 96–104.

    Google Scholar 

  • Fott, J., L. Pechar & M. Prazakova, 1979. Fish as a factor controlling water quality in ponds. In: J. Barica & L. R. Mur (eds), SIL Workshop on Hypertrophic Ecosystems, Vaxjo, Sweden, Sept. 10–14, 1979.

  • Fox, H. M., 1948. The hemoglobin of Daphnia. Proc. R. Soc. Ser. 135: 195–212.

    Google Scholar 

  • Fraser, D. F. & R. D. Cerri, 1982. Experimental evaluation of predator-prey relationships in a patchy environment: consequences for habitat use patterns in Minnows. Ecology 63(2): 307–313.

    Google Scholar 

  • Fryer, G. & T. D. Iles, 1972. The cichlid fishes of the great lakes of Africa. T.F.H. Publications, Neptune City, New Jersey, USA.

    Google Scholar 

  • Furnass, T. I., 1979. Laboratory experiments on prey selection by perch fry (Perca fluviatilis). Freshwat. Biol. 9: 33–43.

    Google Scholar 

  • Galand, G. & B. Liege, 1975. Reponses visuelles unitaires chez la truite. In: M. A. Ali (ed.), Vision in fishes. Plenum Publishing Corporation, New York and London: 127–135.

    Google Scholar 

  • Galbraith, M. G. Jr., 1967. Size-selective predation on Daphnia by rainbow trout and yellow perch. Trans. am. Fish. Soc. 96: 1–10.

    Google Scholar 

  • Gannon, J. E., 1976. The effects of differential digestion rates of zooplankton by alewife, Alosa pseudoharengus, on determination of selective feeding. Trans. am. Fish. Soc. 105: 89–95.

    Google Scholar 

  • Gardner, M. B., 1981. Mechanism of size selectivity by planktivorous fish: A test of hypotheses. Ecology 62: 571–578.

    Google Scholar 

  • Gerritsen, J. & K. G. Porter, 1982. The role of surface chemistry in filter feeding by zooplankton. Science 213: 1225–1227.

    Google Scholar 

  • Gerritsen, J. & J. R. Strickler, 1977. Encounter probabilities and community structure in zooplankton: a mathematical model. J. Fish. Res. Bd Can. 34: 73–82.

    Google Scholar 

  • Gibson, R. M., 1980. Optimal prey-size selection by three-spined sticklebacks (Gasterosteus aculeatus): a test of the apparent size hypothesis. Zeitschrift fur Tierpsychology 52: 291–307.

    Google Scholar 

  • Giussani, G., 1974. Planctofagia selettiva del Coregone ‘Bondel-la’ (Coregonus sp.) del Laggo Maggiore. Mem. Ist. Ital. Idrobiol. 31: 181–203.

    Google Scholar 

  • Gliwicz, Z. M., 1967. Zooplankton and temperature-oxygen condition of two alpine lakes of Tatra Mts. Pol. Arch. Hydrobiol. 14(27): 53–72.

    Google Scholar 

  • Gliwicz, Z. M., 1980. Filtering rates, food size selection, and feeding rates in cladocerans — another aspect of interspecific competition in filter-feeding zooplankton. In: W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The Univ. Press of New England, Hanover, New Hampshire, USA: 282–291.

    Google Scholar 

  • Gliwicz, Z. M., 1981. Food and predation in limiting clutch size of cladocerans. Verh. int. Ver. Limnol. 21: 1562–1566.

    Google Scholar 

  • Gliwicz, Z. M., in press. A lunar cycle in zooplankton. Ecology.

  • Gliwicz, Z. M. & A. Prejs, 1977. Can planktivorous fish keep in check planktonic crustacean populations? A test of size-efficiency hypothesis in typical polish lakes. Ekol. pol. 25(4): 567–591.

    Google Scholar 

  • Gliwicz, Z. M. & M. G. Rowan, 1984. Survival of Cyclops abyssorum tatricus (Copepoda, Crustacea) in alpine lakes stocked with planktivorous fish. Limnol. Oceanogr. 29(6): 1290–1299.

    Google Scholar 

  • Gliwicz, Z. M. & E. Siedlar, 1980. Food size limitation and algae interfering with food collection in Daphnia. Arch. Hydrobiol. 88(2): 155–177.

    Google Scholar 

  • Gliwicz, Z. M., A. Ghilarov & J. Pijanowska, 1981. Food and predation as major factors limiting two natural populations of Daphnia cucullata Sars. Hydrobiologia 80: 205–218.

    Google Scholar 

  • Godsil, H. C., 1954. A descriptive study of certain tuna-like fishes. Calif. Dept. Fish. and Game Fish Bull. 97: 185 pp.

    Google Scholar 

  • Gophen, M., 1980. Food sources, feeding behavior and growth rates of Sarotherodon galilaeum (Linnaeus) fingerlings. Aquaculture 20: 101–115.

    Google Scholar 

  • Gophen, M., R. W. Drenner & G. G. Vinyard, 1983a. Fish introduction into Lake Kinneret — Call for concern. Fish Management 14(1): 43–45.

    Google Scholar 

  • Gophen, M., R. W. Drenner & G. G. Vinyard, 1983b. Cichlid stocking and the decline of the Galilee Saint Peter's fish (Sarotherodon galilaeus) in Lake Kinneret, Israel. Can. J. Fish. aquat. Sci. 40(7): 983–986.

    Google Scholar 

  • Gosline, W. A., 1971. Functional morphology and classification of teleostean fishes. Honolulu, Univ. Press of Hawaii.

  • Gosse, J. P., 1955. Dispositions speciales de l'appareil branchial des Tilapia et Citharinus. Soc. Royale Zool. de Belgique, Annales 86: 303–308.

    Google Scholar 

  • Gras, R. & L. Saint-Jean, 1982. Comments about Ivlev's electivity index. Revue Hydrobiol. trop. 15(1): 33–37.

    Google Scholar 

  • Gras, R., L. Lauzanne & L. Saint-Jean, 1981. Régime alimentaire et sélection des proies chez les Brachysynodontis batensoda (Pisces, Mochochidae) du Lac Tchad en période de basses eaux. Rev. Hydrobiol. trop. 14(3): 223–231.

    Google Scholar 

  • Green, J., 1967. The distribution and variation of Daphnia lumholtzii (Crustacea: Cladocera) in relation to fish predation in Lake Albert, East Africa. J. Zool., Lond. 151: 181–197.

    Google Scholar 

  • Greenwood, P. H., 1953. Feeding mechanisms of the cichlid fish, Tilapia esculenta Graham. Nature 172: 207–208.

    Google Scholar 

  • Grimaldi, E., 1972. Lago Maggiore: effects of exploitation and introductions on the salmonid community. J. Fish. Res. Bd Can. 29(6): 777–785.

    Google Scholar 

  • Grygierek, E., 1962. The influence of increasing carp fry population on crustacean plankton. [Wplyw zageszczenia narybku karpi na faune skorupikow planktonowych]. Rocz-i Nauk. Roln. Ser. B, 81(2): 189–210 (English summary).

    Google Scholar 

  • Grygierek, E., 1967. Formation of fish pond biocenosis exemplified by planktonic crustaceans. Ekol. pol. A, 15: 155–181.

    Google Scholar 

  • Grygierek, E., 1979. Plankton as an ecological indicator of the influence of farming measures on pond biocenosis. Pol. Ecol. Stud. 5(4): 77–140.

    Google Scholar 

  • Grygierek, E., A. Hillbricht-Ilkowska & I. Spodniewska, 1966. The effect of fish on plankton community in ponds. Verh. int. Ver. Limnol. 16(3): 1359–1366.

    Google Scholar 

  • Guma'a, S. A., 1978. The food and feeding habits of young perch, Perca fluviatilis, in Windermere. Freshwat. Biol. 8: 177–187.

    Google Scholar 

  • Hairtson, N. G. Jr., 1980. The vertical distribution of diaptomid copepods in relation to body pigmentation. In: W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The Univ. Press of New England, Hanover, New Hampshire, USA: 98–110.

    Google Scholar 

  • Hall, D. J. & E. E. Werner, 1977. Seasonal distribution and abundance of fishes in the littoral zone of a Michigan lake. Trans. am. Fish. Soc. 106: 545–555.

    Google Scholar 

  • Hall, D. J., W. E. Cooper & E. E. Werner, 1970. An experimental approach to the production dynamics and structures of freshwater animal communities. Limnol. Oceanogr. 15: 839–928.

    Google Scholar 

  • Hall, D. J., E. E. Werner, J. F. Gilliam, G. G. Mittelbach, D. Howard, C. G. Doner, J. A. Dickerman & A. J. Stewart, 1979. Diel foraging behaviour and prey selection in the golden shiner (Notemigonus crysoleucas). J. Fish. Res. Bd Can. 36: 1029–1030.

    Google Scholar 

  • Hamilton, A. L., 1965. An analysis of a freshwater benthic community with special reference to the Chironomidae. Ph.D. Thesis, Univ. of British Columbia, Vancouver, B.C., 216 pp.

    Google Scholar 

  • Harder, 1960. Vergleichende Untersuchungen zur Morphologie des Darmes bei Clupeiodea. Z. Wiss. Zool. 163: 65–167.

    Google Scholar 

  • Hardin, G., 1960. The competitive exclusion principle. Science 131: 1292–1298.

    Google Scholar 

  • Hartman, G. F., 1958. Mouth size and food size in young rainbow trout, Salmo gairdneri. Copeia: 233–234.

  • Hemmings, C. C., 1966. Factors influencing the visibility of objects underwater. In: R. Bainbridge, G. C. Evans & O. Rackham (eds), Light as an Ecological Factor. Brit. Ecol. Soc. Symp. 6: 359–374.

  • Hemmings, C. C., 1974. The visibility of objects underwater. In: G. C. Evans, R. Bainbridge & O. Rackham (eds), Light as an Ecological Factor II. The 16th Symposium of the British Ecological Society, 26–28 March 1974, Blackwell Scientific Publications: 543–548.

  • Henrickson, L., H. G. Nyman, H. G. Oscarson & J. A. E. Stenson, 1980. Trophic changes, without changes in the external nutrient loading. Hydrobiologia 68(3): 257–263.

    Google Scholar 

  • Hester, F. J., 1968. Visual contrast thresholds of the goldfish (Carassius auratus). Vision Res. 8: 1315–1336.

    Google Scholar 

  • Hildebrand, S. F., 1963. Family Clupeidae. In: Sears Found (ed.), Fishes of the Western North Atlantic. Mar. Res. Mem. I. Yale Univ., New Haven 3: 257–454.

    Google Scholar 

  • Hillbricht-Ilkowska, A., 1964. The influence of fish population on the biocenosis of a pond using Rotifera fauna as an illustration. Ekol. pol. A 12: 453–503.

    Google Scholar 

  • Hillbricht-Ilkowska, A., 1966. The effect of different periods of utilization of fish ponds on the occurrence and abundance of plankton Rotatoria. Ekol. pol. A 14: 111–124.

    Google Scholar 

  • Hillbricht-Ilkowska, A. & T. Weglenska, 1973. Experimentally increased fish stock in the pond type Lake Warniak. VII. Numbers, biomass and production of zooplankton. Ekol. pol. 21: 533–552.

    Google Scholar 

  • Hillbricht-Ilkowska, A., A. Prejs & T. Weglenska, 1973. Experimentally increased fish stock in the pond type Lake Warniak. VIII. Approximate assessment of the utilization by fish of the biomass and production of zooplankton. Ekol. pol. 21: 553–562.

    Google Scholar 

  • Hobson, E. S., 1968. Predatory behaviour of some shore fishes in the Gulf of California. Res. Rep. U.S. Fish Wildl. Ser. 73: 1–92.

    Google Scholar 

  • Hobson, E. S., 1974. Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fish. Bull. 72: 915–1031.

    Google Scholar 

  • Holanov, S. H. & J. C. Tash, 1978. Particulate and filter feeding in threadfin shad, Dorosoma petenense, at different light intensities. J. Fish Biol. 13: 619–625.

    Google Scholar 

  • Holling, C. S., 1966. The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 48: 1–86.

    Google Scholar 

  • Holm, N. P., G. G. Ganf & J. Shapiro, 1983. Feeding and assimilation rates of Daphnia pulex fed Aphanizomenon flosaquae. Limnol. Oceanogr. 28(4): 677–687.

    Google Scholar 

  • Hrbáček, J., 1962. Species composition and the amount of zooplankton in relation to the fish stock. Rozpr. ČSAV, Ser. mat. nat. sci. 72: 1–117.

    Google Scholar 

  • Hrbáček, J., 1969. Relations between some environmental parameters and the fish yields as a basis for a predictive model. Verh. int. Ver. Limnol. 17: 1069–1081.

    Google Scholar 

  • Hrbáček, J., 1977. Competition and predation in relation to species composition of freshwater zooplankton, mainly cladocera. In: J. Cairns Jr. (ed.), Aquatic Microbial Communities. Garland Publishing Inc., New York and London: 305–353.

    Google Scholar 

  • Hrbáček, J. & M. Novotna-Dvotakova, 1965. Plankton of four back-waters related to their size and fish stock. Rozpravy Cesk. Akad. Ved. Rada. Mat. Prirod. Ved. 75: 1–64.

    Google Scholar 

  • Hrbáček, J., B. Desortova & J. Popovsky, 1978. Influence of the fish stock on the phosphorus-chlorophyll ratio. Verh. int. Ver. Limnol. 20: 1624–1628.

    Google Scholar 

  • Hrbáček, J., M. Dvotakova, V. Kořínek & L. Procházkóva, 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. int. Ver. Limnol. 14: 192–195.

    Google Scholar 

  • Hughes, G. M., 1965. Comparative Physiology of Vertebrate Respiration. Harvard Univ. Press, Cambridge.

    Google Scholar 

  • Hughes, G. M., 1976. Fish respiratory physiology. In: P. S. Davies (ed.), Perspectives in Experimental Biology, Vol. 1, Zoology. Pergamon, New York: 235–245.

    Google Scholar 

  • Hughes, G. M. & M. Morgan, 1973. The structure of fish gills in relation to their respiratory function. Biol. Rev. 48: 419–475.

    Google Scholar 

  • Hughes, G. M. & A. J. Woakes, 1970. An electric analogue model of the fish ventilatory system. J. Physiol., Lond. 207: 49–50.

    Google Scholar 

  • Hunter, J. R., 1979. The feeding behaviour and ecology of marine fish larvae. In: J. E. Bardach (ed.), The Physiological and Behavioural Manipulation of Food Fish as Production and Management Tools.

  • Hurlbert, S. M. & M. S. Mulla, 1981. Impacts of Mosquito fish (Gambusia affinis) predation on plankton communities. Hydrobiologia 83: 125–151.

    Google Scholar 

  • Hurlbert, S. M., J. Zedler & D. Fairbanks, 1972. Ecosystem alteration by Mosquito fish (Gambusia affinis) predation. Science 175: 639–641.

    Google Scholar 

  • Hutchinson, B. P., 1971. The effect of fish predation on the zooplankton of ten Adirondack lakes, with particular reference to the alewife, Alosa pseudoharengus. Trans. am. Fish. Soc. 100: 325–335.

    Google Scholar 

  • Im, B. H., 1977. Etude de l'alimentation de quelques espèces de Synodontis (Poissons, Mochochidae) du Tchad. Thèse Doct. Spéc. Univ. P. Sabatier de Toulouse, Biol. ani. Opt. Hydrobiol., ORSTOM, Paris, 150 pp.

    Google Scholar 

  • Ingle, D., 1968. Spatial dimensions of vision in fish. In: D. Ingle (ed.), The Central Nervous System and Fish Behaviour. Univ. of Chicago Press, Chicago: 51–59.

    Google Scholar 

  • Ingle, D., 1971. Vision: the experimental analysis of visual behaviour. In: W. S. Hoar & D. I. Rendall (eds), Fish Physiology. Vol. V. Academic Press, New York: 59–77.

    Google Scholar 

  • Ivlev, V. S., 1961. Experimental ecology of the feeding of fishes. Yale Univ. Press, New Haven, 302 pp. (English translation of the original Russian book edited in 1955 and based on research between 1939 and 1949).

    Google Scholar 

  • Jacobs, J., 1974. Quantitative measurements of food selection. Oecologia 14: 413–417.

    Google Scholar 

  • Janssen, J., 1976. Feeding modes and prey size selection in the alewife (Alosa pseudoharengus). J. Fish. Res. Bd Can. 33: 1972–1975.

    Google Scholar 

  • Janssen, J., 1978a. Feeding behaviour repertoire of the alewife (Alosa pseudoharengus), and the ciscoes Coregonus hoyi and C. artedii. J. Fish. Res. Bd Can. 35: 249–253.

    Google Scholar 

  • Janssen, J., 1978b. Will alewives feed in the dark? Envir. Biol. Fishes 3: 239–240.

    Google Scholar 

  • Janssen, J., 1980. Alewives (Alosa pseudoharengus) and ciscoes (Coregonus artedii) as selective and non-selective planktivores. In: W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The Univ. Press of New England, Hanover, New Hampshire, USA: 580–586.

    Google Scholar 

  • Janssen, J., 1981. Searching for zooplankton just outside Snell's window. Limnol. Oceanogr. 26(6): 1168–1171.

    Google Scholar 

  • Janssen, J., 1982. Comparison of searching behavior for zooplankton in an obligate planktivore, blueback herring (Alosa aestivalis) and a facultative planktivore, bluegill (Lepomis macrochirus). Can. J. Fish. aquat. Sci. 39(12): 1649–1654.

    Google Scholar 

  • Janusko, M., 1974. The effect of three species of phytophagous fish on algae development. Pol. Arch. Hydrobiol. 21: 431–454.

    Google Scholar 

  • Jeffries, H. P., 1975. Diets of juvenile Atlantic menhaden (Brevoortia tyrannus) in three estuarine habitats as determined from fatty acid composition of gut contents. J. Fish. Res. Bd Can. 32: 587–592.

    Google Scholar 

  • Jenkins, R. M., 1979. Predator-prey relations in reservoirs. In. R. H. Stroud & M. Clepper (eds), Predator-Prey Systems in Fisheries Management. International Symposium on Predator-Prey System in Fish Communities and Their Role in Fisheries Management. Atlanta, Georgia, July 24–27, 1978, Sport Fishing Institute, Washington D.C., USA: 123–134.

    Google Scholar 

  • Jones, S. & H. Rosa Jr., 1965. Synopsis of biological data on Indian mackerel Rastrelliger kanagurta (Cuvier, 1817) and short bodied mackerel Rastrelliger brachysoma (Bleeker, 1851). FAO Fisheries Synopsis no. 29.

  • Jones, D. R. & T. Schwartzfeld, 1974. The oxygen cost to the metabolism and efficiency of breathing in trout (Salmo gairdnert). Resp. Physiol. 21: 241–254.

    Google Scholar 

  • Jørgensen, S. E. & H. F. Mejer, 1977. Ecological buffer capacity. Ecol. Modelling 3: 39–61.

    Google Scholar 

  • June, F. C. & F. T. Carlson, 1971. Food of young Atlantic menhaden, Brevoortia tyrannus, in relation to metamorphosis. Fish. Bull., USA 68: 493–512.

    Google Scholar 

  • Kajak, Z., 1977. Feeding habits of silver carp, Hypophtalmichthys molitrix (Val.), and the problem of clean water. [Odzywianie sie tolpygi bialej, Hypophtalmichthys molitrix (Val.), a problem czystości wód]. Wiadomosci Ekologizne 23(3): 258–268.

    Google Scholar 

  • Kajak, Z., I. Spodniewska & R. J. Wisniewski, 1977. Studies on food selectivity of silver carp, Hypophtalmichthys molitrix (Val.). Ekol. pol. 25(2): 227–239.

    Google Scholar 

  • Kajak, Z., J. Zawiska & A. Hillbricht-Ilkowska, 1976. Effect of experimentally increased fish stock on biocenosis and recovery processes of a pond type lake. Limnologia, Berlin 10(2): 595–601.

    Google Scholar 

  • Kajak, Z., J. I. Rybak, I. Spodniewska, W. A. GodlewskaLipowa, 1975. Influence of the planktonivorous fish Hypothtalmichthys molitrix (Val.) on the plankton and benthos of the eutrophic lake. Pol. Arch. Hydrobiol. 22(2): 301–310.

    Google Scholar 

  • Keast, A., 1970. Food specialization and bioenergetic interrelations in the fish faunas of some Ontario waterways. In: J. H. Steele (ed.), Marine Food Chains, Oliver & Boyd, Edinburgh: 377–411.

    Google Scholar 

  • Keast, A. & D. Webb, 1966. Mouth and body form relative to feeding ecology in fish fauna of a small lake, Lake Opini, Ontario. J. Fish. Res. Bd Can. 23: 1845–1874.

    Google Scholar 

  • Kerfoot, W. C., 1980. Commentary: transparency, body size and prey conspiciousness. In: W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The Univ. Press of New England, Hanover, New Hampshire, USA: 609–617.

    Google Scholar 

  • Kerfoot, W. C., D. L. Kellog & J. R. Strickler, 1980. Visual observations of live zooplankters: evasion, escape, and chemical defenses. In: W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The Univ. Press of New England, Hanover, New Hampshire, USA: 10–27.

    Google Scholar 

  • Kettle, D. & W. J. O'Brien, 1978. Vulnerability of arctic zooplankton species to predation by small lake trout (Salvelinus namaycush). J. Fish. Res. Bd Can. 35: 1495–1500.

    Google Scholar 

  • King, D. P. F. & P. R. McLeod, 1976. Comparison of the food and filtering mechanism of pilchard, Sardinops ocellata, and anchovy, Engraulis capensis, of South West Africa, 1971–1972. Sea Fisheries Branch Inv. Rpt. no. 111, 29 pp.

  • Kislalioglu, M. & R. N. Gibson, 1976. Some factors governing prey selection by 15-spined stickleback, Spinachia spinachia L. J. exp. mar. Biol. Ecol. 25: 159–169.

    Google Scholar 

  • Kliewer, E. V., 1970. Gill raker variation and diet in lake whitefish Coregonus clupegformis in Northern Manitoba. In: C. C. Lindsey & C. S. Woods (eds), Biology of Coregonid Fishes. Univ. of Manitoba Press, Winnipeg: 147–165.

    Google Scholar 

  • Koksvik, J. I. & K. Aagaard, 1984. Effects of rotenone treatment on the benthic fauna of a small eutrophic lake. Verh. int. Ver. Limnol. 22: 658–665.

    Google Scholar 

  • Kramer, M., 1979. Selektionsverhalten und Grossenunterscheidung bei Elritzen (Phoxinus laevis) gegenuber Beutesiganismen (Daphnia pulex). Ph.D. Thesis, Univ. of Munchen, Munich, Germany.

    Google Scholar 

  • Krebs, J. R., 1973. Behavioural aspects of predation. In: P. P. G. Bateson & P. H. Klopfer (eds), Plenum Press, New York-London: 73–111.

  • Krebs, J. R., 1978. Optimal foraging: Decision rules for predators. In: J. R. Krebs & N. B. Davies (eds), Behavioral Ecology: An Evolutionary Approach. Blackwell Scientific Publications: 23–63.

  • Krebs, J. R., A. Kacelnik & P. Taylor, 1978. Test of optimal sampling by foraging great tits. Nature 275: 27–31.

    Google Scholar 

  • Krebs, J. R., J. C. Ryan & E. L. Charnov, 1974. Hunting by expectation or optimal foraging? A study of patch use by chickadees. Animal Behavior 22: 953–964.

    Google Scholar 

  • Kutkuhn, J. M., 1957. Utilization of plankton by juvenile gizzard shad in a shallow prairie lake. Trans. am. Fish. Soc. 87: 80–103.

    Google Scholar 

  • Lamar, E. S., S. Hect, S. Shlaer & C. D. Hendley, 1947. Size, shape, and contrast in detection of targets by daylight vision. I. Data on analytical description. J. Opt. Soc. am. 37: 531–545.

    Google Scholar 

  • Lamarra, V. A. Jr., 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh. int. Ver. Limnol. 19: 2461–2468.

    Google Scholar 

  • Lammens, E. H. R. R., 1985. A test of a model for planktivorous filter feeding by bream, Abramis brema. Envir. Biol. Fishes 13(4): 289–296.

    Google Scholar 

  • Langeland, A. & H. Reinertsen, 1982. Interactions between phytoplankton and zooplankton in a fertilized lake. Holarct. Ecol. 5(3): 253–272.

    Google Scholar 

  • Larkin, P. A. & T. G. Northcote, 1969. Fish as indices of eutrophication. In: Eutrophication: causes, consequences, correctives. Proceedings of a Symposium. National Acad. Sci. Washington: 256–273.

  • Lauder, G. V., 1980a. The suction feeding mechanism in sunfishes (Lepomis): an experimental analysis. J. exp. Biol. 88: 49–72.

    Google Scholar 

  • Lauder, G. V., 1980b. Hydrodynamics of prey capture by teleost fishes. In: D. Schneck (ed.), Biofluid Mechanics, Vol. 2. Plenum Press, New York: 161–181.

    Google Scholar 

  • Lauder, G. V., 1983. Prey capture hydrodynamics in fishes: experimental tests of two models. J. exp. Biol. 104: 1–13.

    Google Scholar 

  • Laughlin, D. R. & E. E. Werner, 1980. Resource partitioning in two coexisting sunfish: pumpkinseed (Lepomis gibbosus) and northern longear sunfish (Lepomis megalotis peltastes). Can. J. Fish. Aquat. Sci. 37: 1411–1420.

    Google Scholar 

  • Lauzanne, L., 1970. La sélection des proies chez Alestes baremoze (Pisces, Characidae). Cah. ORSTOM, sér. Hydrobiol. 7(1): 71–76.

    Google Scholar 

  • Lauzanne, L., 1973. Etude qualitative de la nutrition des Alestes baremoze (Pisces, Characidae). Cah. ORSTOM, sér. Hydrobiol. 7(1): 3–15.

    Google Scholar 

  • Lauzanne, L., 1977. Aspects qualitatifs et quantitatifs de l'alimentation des poissons du Tchad. These Doct. Sc. Nat., Univ. P. M. Curie Paris VI et MNHN, 282 pp.

  • Lauzanne, L. & A. Iltis, 1975. La selection de la nourriture chez Tilapia galilaea (Pisces, Cichlidae) du Lac Tchad. Cah. ORSTOM, sér. Hydrobiol. 9(3): 193–199.

    Google Scholar 

  • Leah, R. T., B. Moss & D. E. Forrest, 1980. The role of predation in causing major changes in the limnology of a hypertrophic lake. Int. Revue ges. Hydrobiol. 62: 223–247.

    Google Scholar 

  • Lechowicz, M. J., 1982. The sampling characteristics of electivity indices. Oecologia 52: 22–30.

    Google Scholar 

  • Leong, R. J. & C. P. O'Connell, 1969. A laboratory study of particulate and filter feeding of the northern anchovy, Engraulis mordax. J. Fish. Res. Bd Can. 26: 557–582.

    Google Scholar 

  • Leventer, H., 1981. Biological control of reservoirs by fish. Bamidgeh 33(1): 3–23.

    Google Scholar 

  • Levine, J. S., P. S. Lobel & E. F. McNichol Jr., 1979. Visual communication in fishes. In: M. A. Ali (ed.), Environmental Physiology of Fishes. Plenum Press, New York and London: 447–475.

    Google Scholar 

  • Lewis, R. C., 1929. The food habits of the California sardine in relation to the seasonal distribution of microplankton. Bull. Scripps Inst. Oceanogr. Tech. Ser. 2: 155–180.

    Google Scholar 

  • Liem, K. F., 1967. Functional morphology of the head of the anabantoid teleost fish, Helostoma temmincki. J. Morphol. 121: 135–158.

    Google Scholar 

  • Liem, K. F., 1980a. Adaptative significance of intra and interspecific differences in the feeding repertoires of cichlid fishes. Am. Zool. 20: 295–314.

    Google Scholar 

  • Liem, K. F., 1980b. Aquisition of energy by teleosts: adaptative mechanisms and evolutionary patterns. In: M. A. Ali (ed.), Environmental Physiology of Fishes. NATO Advanced Study Inst., Ser. A, Life Sciences. Plenum Press, New York: 299–334.

    Google Scholar 

  • Lindgren, P. E., 1960. About the effect of rotenone upon benthonic animals in lakes. Inst. Freshw. Res. Drottningholm 39: 172–184.

    Google Scholar 

  • Longhurst, A. R., 1971. The clupeoid resources of tropical seas. Oceanogr. Mar. Biol. Ann. Rev. 9: 349–385.

    Google Scholar 

  • Losos, B. & J. Hetesa, 1973. The effect of mineral fertilization and of carp fry on the composition and dynamics of plankton. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague 1973: 173–217.

    Google Scholar 

  • Loukashkin, A. S., 1970. On the diet and feeding behaviour of the northern anchovy, Engraulis mordax (Girard). Proc. Calif. Sci. Fourth Series 37: 419–458.

    Google Scholar 

  • Luecke, C. & W. J. O'Brien, 1981. Prey location volume of a planktivorous fish: a new measure of prey vulnerability. Can. J. Fish. aquat. Sci. 38: 1264–1270.

    Google Scholar 

  • Lynch, M., 1979. Predation, competition, and zooplankton community structure: an experimental study. Limnol. Oceanogr. 24(2): 253–272.

    Google Scholar 

  • Lynch, M., 1980. Aphanizomenon blooms: alternate control and cultivation by Daphnia pulex. In: W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities, The Univ. Press of New England, Hanover, New Hampshire, USA: 299–304.

    Google Scholar 

  • Lynch, M. & J. Shapiro, 1981. Predation, enrichment and phytoplankton community structure. Limnol. Oceanogr. 26(1): 86–102.

    Google Scholar 

  • Lythgoe, J. N., 1968. Visual pigments and visual range underwater. Vision Res. 8: 997–16012.

    Google Scholar 

  • Lythgoe, J. N., 1979. The Ecology of Vision. Clarendon Press, Oxford.

    Google Scholar 

  • Mac Arthur, R. H. & E. R. Pianka, 1966. On optimal use of a patchy environment. Am. Nat. 100: 603–609.

    Google Scholar 

  • Mago-Leccia, F. & T. M. Zaret, 1978. The taxonomic status of Rhabdolichops troscheli (Kaup, 1856), and speculations on gymnotiform evolution. Env. Biol. Fishes 3: 379–384.

    Google Scholar 

  • Malyarevskaya, A. YA., T. I. Birger, O. M. Arsan & V. D. Solomatina, 1972. Metabolic relationship between blue-green algae and fish. Hydrobiological Journal 8(3): 35–41.

    Google Scholar 

  • Marshall, N. B., 1965. The Life of Fishes. Weidenfeld and Nicolson, London 402 pp.

    Google Scholar 

  • McComas, S. R. & R. W. Drenner, 1982. Species replacement in a reservoir fish community: silverside feeding mechanics and competition. Can. J. Fish. aqaut. Sci. 39: 815–821.

    Google Scholar 

  • McNaught, D. C., 1979. Considerations of scale modeling large aquatic ecosystems. In: D. Scavia & A. Robertson (eds), Perspective on Lake Ecosystems Modeling. Ann Arbor Science, Ann Arbor: 3–24.

    Google Scholar 

  • Mellors, W. K., 1975. Selective predation of ephippial Daphnia and the resistance of ephippial eggs to digestion. Ecology 56: 974–980.

    Google Scholar 

  • Merrett, N. R. & H. S. J. Roe, 1974. Patterns and selectivity in the feeding of certain mesopelagic fishes. Mar. Biol. 28: 115–126.

    Google Scholar 

  • Miller, R. J., 1979. Relationships between habitat and feeding mechanisms in fishes. In: R. H. Stroud & H. Clepper (eds), Predator-prey systems in fisheries management. Sport Fishing Institute, Washington D.C., USA: 269–280.

    Google Scholar 

  • Mittelbach, G. G., 1981. Foraging efficiency and body size: a study of optimal diet and habitat use in bluegills. Ecology 62: 1370–1386.

    Google Scholar 

  • Mittelbach, G. G., 1984. Predation and resource partitioning in two sunfishes (Centrarchidae). Ecology 65(2): 499–513.

    Google Scholar 

  • Monod, T., 1949. Sur l'appareil branchiospinal de quelques téléostéens tropicaux. Bull. I.F.A.N. 11(1–2): 36–76.

    Google Scholar 

  • Monod, T., 1961. Brevoortia Gill 1861 et Ethmalosa Ragan 1917. Bull. I.F.A.N. 23(A): 506–547.

    Google Scholar 

  • Moriarty, D. J. W., 1973. The physiology of digestion of bluegreen algae in the cichlid fish Tilapia nilotica. J. Zool., Lond. 171: 25–39.

    Google Scholar 

  • Moriarty, C. M. & D. J. W. Moriarty, 1973. Quantitative estimation of the dialy ingestion of phytoplankton by Tilapia nilotica and Haplochromis nigripinnis in Lake George, Uganda. J. Zool., Lond. 171: 15–23.

    Google Scholar 

  • Moriarty, D. J. W., J. P. E. C. Darlington, E. G. Dunn, C. M. Moriary & M. P. Telvin, 1973. Feeding and grazing in Lake George, Uganda. Proc. R. Soc. Lond. B. 184: 299–319.

    Google Scholar 

  • Motta, P. J., 1984. Mechanics and functions of jaw protrusion in teleost fishes: a review. Copeia 1984(1): 1–18.

    Google Scholar 

  • Muller, M., J. Osse & J. H. G. Verhagen, 1982. A quantitative hydrodynamical model of suction feeding in fish. J. theor. Biol. 95: 49–79.

    Google Scholar 

  • Muntz, W. R. A., 1974a. Visual pigments and the environment. In: M. A. Ali (ed.), Vision in Fishes. Plenum Publishing Corporation, New York: 565–578.

    Google Scholar 

  • Muntz, W. R. A., 1974b. Behavioural studies of vision in a fish and possible relationships to the environment. In: M. A. Ali (ed.), Vision in Fishes. Plenum Publishing Corporation, New York: 705–717.

    Google Scholar 

  • Muntz, W. R. A., 1977. The visual world of the amphibia. In: F. Crescitelli (ed.), The Visual System in Vertebrates. Springer-Verlag, New York: 275–307.

    Google Scholar 

  • Nafpaktitis, B. G. R. H., J. E. Backus, R. L. Craddock, B. H. Haedrich, Robison & C. Karnella, 1977. Family Myctophidae. In: Sears Foundation for Marine Research, Fishes of the Western North Atlantic. Mem. 1, Yale Univ., New Haven 7: 13–258.

    Google Scholar 

  • Nakamura, E. L., 1968. Visual acuity of two tunas Katsuwonus pelamis and Euthynnus affinis. Copeia 1: 41–49.

    Google Scholar 

  • Nakashima, B. S. & W. C. Leggett, 1980. The role of fishes in the regulation of phosphorus availability in lakes. Can. J. Fish. aquat. Sci. 37: 1540–1549.

    Google Scholar 

  • Nakashima, B. S. & W. C. Leggett, 1982. How important is phosphorus excretion in fish to the phosphorus dynamics of lakes? Can. J. Fish. aquat. Sci. 39: 364–365.

    Google Scholar 

  • Narver, D. W., 1970. Diel vertical movements and feeding of underyearling sockeye salmon and the limnetic zooplankton in Babine Lake, British Columbia. J. Fish. Res. Bd Can. 27: 281–316.

    Google Scholar 

  • Neill, S. R. & J. M. Cullen, 1974. Experiments on whether schooling by their prey affects the hunting behaviour of cephalopod and fish predators. J. Zool., Lond. 172: 549–569.

    Google Scholar 

  • Nelson, G. J., 1967. Epibranchial organs in lower teleostean fishes. J. Zool., Lond. 153: 71–89.

    Google Scholar 

  • Nelson, G. J., 1970. The hyobranchial apparatus of teleostean fishes of the families Engraulidae and Chirocentridae. American Museum Novitates, no. 2410.

  • Nelson, D. W., 1979. The mechanisms of filter feeding in three teleosts: Engraulis mordax, Sardinops caerulea and Rastreltiger kanagurta. Univ. of Washington, Seattle, Zool/Fish 575, 4 Dec. 1979, 17 pp.

  • Nilsson, N., 1960. Seasonal fluctuations in the food segregation of trout, char, and whitefish in 14 North-Swedish lakes. Rep. Inst. Freshw. Res. Drottningholm 41: 185–205.

    Google Scholar 

  • Nilsson, N., 1963. Interaction between trout and char in Scandinavia. Trans. am. Fish. Soc. 92: 276–285.

    Google Scholar 

  • Nilsson, N. A. & B. Pejler, 1973. On the relation between fish fauna and zooplankton composition in north swedish lakes. Rep. Inst. Freshw. Res. Drottningholm 53: 51–56.

    Google Scholar 

  • Nilssen, J. P., 1984. Tropical lakes — functional ecology and future development: the need for a process-oriented approach. Hydrobiologia 113: 231–242.

    Google Scholar 

  • Nival, P. & S. Nival, 1976. Particle retention efficiencies of an herbivorous copepod, Acartia clausi (adult and copepodit stages): effects on grazing. Limnol. Oceanogr. 21: 24–38.

    Google Scholar 

  • Norman, J. R. & P. H. Greenwood, 1963. A History of Fishes. Ernest Berm Limited, London, 467 pp.

    Google Scholar 

  • Northcote, T. G., J. Walters & J. M. B. Hume, 1978. Initial impacts of experimental fish introductions on the macrozooplankton of small oligotrophic lakes. Verh. int. Ver. Limnol. 20: 2003–2012.

    Google Scholar 

  • Novotna, M. & V. Korinek, 1966. Effect of the fish stock on the quantity and species composition of the plankton of two backwaters. Academia Publishing House of the Czechoslovak Academy of Sciences, Hydrobiological Studies 1: 297–322.

    Google Scholar 

  • O'Brien, W. J., 1979. The predatory-prey interactions of planktivorous fish and zooplankton — a recent research with planktivorous fish and their zooplankton prey shows the evolutionary thrust and parry of the predator-prey relationship. American Scientist 67: 572–581.

    Google Scholar 

  • O'Brien, W. J. & G. L. Vinyard, 1974. Comment on the use of Ivlev's electivity index with planktivorous fish. J. Fish. Res. Bd Can. 31: 1427–1429.

    Google Scholar 

  • O'Brien, W. J., N. A. Slade & G. L. Vinyard, 1976. Apparent size as the determinant of prey selection by bluegill sunfish (Lepomis macrochirus). Ecology 57: 1304–1310.

    Google Scholar 

  • O'Connell, C. P., 1972. The interrelation of biting and filtering in the feeding activity of the northern anchovy (Engraulis mordax). J. Fish. Res. Bd Can. 29: 285–293.

    Google Scholar 

  • O'Connell, C. P. & J. R. Zweifel, 1972. A laboratory study of particulate and filter feeding of the Pacific mackeral, Scomber japonicus. Fish. Bull. 70: 973–981.

    Google Scholar 

  • Olrik, K., S. Lundoer & K. Rasmussen, 1984. Interactions between phytoplankton, zooplankton, and fish in nutrient rich shallow Lake Hjarbaek Fjord, Denmark. Int. Revue ges. Hydrobiol. 69(3): 389–405.

    Google Scholar 

  • Omarov, M. O. & L. P. Lazareva, 1974. Nutrition of Hypophthalmichthys molitrix Val. in water bodies of Daghestan. [Pitanie belogo tolstolobika v vodoemach Dagestana]. Gidrobiol. Zh. 10(4): 100–103.

    Google Scholar 

  • Opuszynśki, K., 1979a. Silver carp, Hypophthalmichthys molitrix (Val.), in carp ponds. I. Fishery production and food relations. Ekol. pol. 27(1): 71–92.

    Google Scholar 

  • Opuszyński, K., 1979b. Silver carp, Hypophthalmichthys molitrix (Val.), in carp ponds. III: Influence on ecosystem. Ekol. pol. 27(1): 117–133.

    Google Scholar 

  • Opuszyński, K., 1980. The role of fishery management in counteracting eutrophication processes. In: J. Barica & L. R. Mur (eds), SIL Workshop on Hypertrophic Ecosystems, Vaxjo, Sweden, Sept. 10–14, 1979, Developments in Hydrobiology 2: 105–116.

  • Osse, J. & M. Muller, 1980. A model of suction feeding in teleostean fishes with some implications for ventilation, In: M. A. Ali (ed.), Environmental Physiology of Fishes. Plenum Publishing Co., New York: 335–352.

    Google Scholar 

  • Owen, R. W., 1981. Microscale plankton patchiness in the larval anchovy environment. Rapp. P.-V. Reun. Cons. int. Explor. Mer. 178: 364–368.

    Google Scholar 

  • Paloheimo, J. E., 1979. Indices of food type preference by a predator. J. Fish Res. Bd Can. 36: 470–473.

    Google Scholar 

  • Payne, A. I., 1978. Gut pH and digestive strategies in estuarine grey mullet (Mugilidae) and tilapia (Cichlidae). J. Fish. Res. Bd Can. 13(5): 627–629.

    Google Scholar 

  • Pearre, S. Jr., 1982. Estimating prey preference by predators: uses of various indices and a proposal of another based on X2. Can. J. Fish. aquat. Sci. 39: 914–923.

    Google Scholar 

  • Pearson, N. E., 1974. Optimal foraging theory. Quant. Sci. Pap. 39, Cent. Quant. Sci., Univ. of Washington, Seattle, 48 pp.

    Google Scholar 

  • Peters, D. S., 1972. Feeding selectivity in juvenile Atlantic menhaden Brevoortia tyrannus (Pisces: Clupeidae). The ABS Bulletin, Vol. 19, no. 2, 91 pp.

  • Pierce, R. J., T. E. Wissing & B. A. Megrey, 1981. Aspects of the feeding ecology of gizzard shad in Acton Lake, Ohio. Trans. am. Fish. Soc. 110: 391–395.

    Google Scholar 

  • Pigarev, I. N. & G. M. Zenkin, 1970. Dark spot detectors in the frog retina and their role in organization of feeding behavior. Neurosci. Transl. 13: 29–33.

    Google Scholar 

  • Pigarev, I. N., G. M. Zenkin & S. V. Girman, 1971. Activity of the retina's detectors in unrestrained frogs. Fiziol. Zh. SSSR Im. I. M. Sechenova 57: 1448–1452.

    Google Scholar 

  • Pliszka, F., 1934. Materjaly do typologii stawow. Plankton stawow doswiadczalnych w Rudzie Malienickiej. Prace i Spraword. Zakl. Icht. i Ryb. 37: 235–261.

    Google Scholar 

  • Poulet, S. A. & P. Marzot, 1978. Chemosensory grazing by marine calanoid copepods (Arthropoda: Crustacea). Science 200: 1403–1405.

    Google Scholar 

  • Pourriot, R., 1983. Influence sélective de la prédation sur la structure et la dynamique du zooplankton d'eau douce. Acta Oecologica, Oecol. Génér. 4(1): 29–41.

    Google Scholar 

  • Pourriot, R., J. Capblancq, P. Champ & J. A. Meyer, 1982. Ecologie du plancton des eaux continentales. Masson, collection d'écologie, no. 16, 198 pp.

  • Prejs, A., 1973. Experimentally increased fish stock in the pond type Lake Warniak. IV. Feeding of introduced and authochthonous non-predatory fish. Ekol. pol. 21: 465–505.

    Google Scholar 

  • Prejs, A., 1976. Fishes and their feeding habits. In: E. Pieczynska (ed.), Selected Problems of Lake Littoral Ecology, Warshaw University Press, Warszawa: 155–171.

    Google Scholar 

  • Prejs, A., 1978. Eutrophication of lakes and the ichthyofauna. [Eutrofizacja jezior a ichthyofauna]. Wiadomosci Ekologiczne 24(3): 201–208.

    Google Scholar 

  • Protasov, V. R., 1968. Vision and near orientation of fish. Israel Program Scient. Trans., Jerusalem (1970).

    Google Scholar 

  • Prowse, G. A., 1964. Some limnological problems in tropical fish ponds. Verh. int. Ver. Limnol. 15: 480–484.

    Google Scholar 

  • Pyke, G. H., 1979. Optimal foraging in fish. In: R. H. Stroud & H. Clepper (eds), Predator-Prey Systems in Fisheries Management. Sport Fishing Institute, Washington D.C., U.S.A.: 199–202.

    Google Scholar 

  • Pyke, G. H., H. R. Pulliam & E. L. Charnov, 1977. Optimal foraging theory: a selective review of theory and tests. Quarterly Review of Biology 52: 137–154.

    Google Scholar 

  • Radakov, D. V., 1973. Schooling and the Ecology of Fish (Tansl, from Russian by H. J. Mills). John Wiley and Sons Inc., New York, 173 pp.

    Google Scholar 

  • Rasmussen, G. A., 1973. A study of the feeding habits of four species of fish, Alosa pseudoharengus, Coregonus hoyi, Perca flavescens, and Osmerus mordax at three sites on Lake Michigan, as compared to phytoplankton, zooplankton and water chemistry of those sites. Ph.D. Thesis, Michigan State Univ., East Lansing, Mich., 104 pp.

    Google Scholar 

  • Reif, C. B. & D. W. Tappa, 1966. Selective predation: smelt and cladocerans in Harveys Lake. Limnol. Oceanogr. 11: 437–438.

    Google Scholar 

  • Reinertsen, H. & A. Langeland, 1982. The effects of a lake fertilization on the stability and utilization of a limnetic ecosystem. Holarct. Ecol. 5(3): 311–324.

    Google Scholar 

  • Reinertsen, H. & Y. Olsen, 1984. Effects of fish elimination on the phytoplankton community of a eutrophic lake. Verh. int. Ver. Limnol. 22: 649–657.

    Google Scholar 

  • Rhodes, R. J., 1971. The food habits of the alewife in Indiana waters of Lake Michigan. M.Sc. Thesis, Ball State Univ., Muncie, Indiana, 82 pp.

    Google Scholar 

  • Rhodes, R. J. & T. S. McComish, 1975. Observations on the adult alewife's food habits (Pisces: Clupeidae: Alosa pseudoharengus) in Indiana's water of Lake Michigan in 1970. Ohio J. Sci. 75: 50–55.

    Google Scholar 

  • Roberts, T. R., 1972. Ecology of fishes in the Amazon and Congo basins. Bull. Mus. Comp. Zool. Havard 143: 117–147.

    Google Scholar 

  • Rojas de Mendiola, B., 1971. Some observations on the feeding of the Peruvian anchoveta Engraulis ringen J. in two regions of the Peruvian coast. In: J. D. Costlow, Jr. (ed.), Fertility of the Sea. Gordon and Breach, New York: 417–440.

    Google Scholar 

  • Rosen, R. A. & D. C. Hales, 1981. Feeding of paddlefish, Polyodon spathula. Copeia 2: 441–455.

    Google Scholar 

  • Rosenthal, H., 1969. Untersuchungen uber das Beutefangyerhalten bei Larven des Hering Clupea harengus. Mar. Biol. 3: 208–221.

    Google Scholar 

  • Rosenthal, H. & G. Hempel, 1970. Experimental studies in feeding and food requirements of herring larvae (Clupea harengus L.). In: J. H. Steele (ed.), Marine Food Chains. Oliver and Boyd, Edinburgh: 344–364.

    Google Scholar 

  • Rosenzweig, M. L., 1979. Optimal habitat selection in two species competitive systems. Forschritte der Zoologie 25: 283–293.

    Google Scholar 

  • Rubenstein, D. I. & M. A. R. Koehl, 1977. The mechanisms of filter feeding: some theoretical considerations. Am. Nat. 111: 981–984.

    Google Scholar 

  • Ryther, J. H., 1969. Relationship of photosynthesis to fish production in the sea. Science 166: 72–76.

    Google Scholar 

  • Sandberg, P. A., 1964. The ostracod genus Cyprideis in the Americas. Stockholm Contrib. Geol. 12: 1–78.

    Google Scholar 

  • Savina, P. A., 1965. Filter feeding of silver carp Hypophthalmichthys molitrix (Val.). [Filtracionnoe pitanie belogo tolstolobika Hypophthalmichthys molitrix (Val.)]. Vopr. Ichtiol. 5: 135–140.

    Google Scholar 

  • Schlesinger, D. A., L. A. Molot & B. J. Shuter, 1981. Specific growth rates of freshwater algae in relation to cell size and light intensity. Can. J. Fish. aquat. Sci. 38: 1052–1058.

    Google Scholar 

  • Schoener, T. W., 1969. Models of optimal size for solitary predators. Amer. Nat. 103: 277–313.

    Google Scholar 

  • Schoener, T. W., 1971. Theory of Feeding Strategies. Ann. Rev. Ecol. Syst. 2: 369–404.

    Google Scholar 

  • Schutz, D. C. & T. G. Northcote, 1972. An experimental study of feeding behavior and interaction of coastal cutthroat trout (Salmo clarki clarki) and dolly varden (Salvelinus malma). J. Fish. Res. Bd Can. 29: 555–565.

    Google Scholar 

  • Seghers, B. H., 1975. Role of gill rakers in size-selective predation by lake whitefish, Coregonus clupeaformis (Mitchill). Verh. int. Ver. Limnol. 19: 2401–2405.

    Google Scholar 

  • Shapiro, J., 1978. The need for more biology in lake restoration. Contrib. # 183 from the Limnological Research Center, Univ. of Minnesota, Minneapolis, for the USEPA National Conference on Lake Restoration, Minneapolis, MN, Aug. 22–24, 1978, 17 pp.

  • Shapiro, J., 1979. The importance of trophic level interactions to the abundance and species composition of algae in lakes. In: J. Barica & L. R. Mur (eds), SIL Workshop on Hypertrophic Ecosystems, Vaxjo, Sweden, Sept. 10–14, 1979, Developments in Hydrobiology 2: 105–116.

  • Shapiro, J. & R. Carlson, 1982. Comment on the role of fishes in the regulation of phosphorus availability in lakes. Can. J. Fish. aquat. Sci. 39: 364.

    Google Scholar 

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371–383.

    Google Scholar 

  • Shapiro, J., V Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to Lake Restoration. In: P. L. Brezonik & J. L. Fox (eds.), Symposium on Water Quality Management Through Biological Control, Jan. 20–23, 1975, Univ. of Florida, Gainesville, Dept. Env. Eng. Sci. & USEPA: 85–96.

  • Shapiro, J., B. Forsberg, V. Lamarra, G. Lindmark, M. Lynch, E. Smeltzer & G. Zoto, 1982. Experiments and experiences in biomanipulation — studies on biological ways to reduce algal abundance and eliminate blue-greens. Limnological Research Center, Univ. of Minnesota, Minneapolis, Minnesota, Intern Report no. 19: 251 pp.

  • Shaw, E., 1978. Schooling fishes. Am. Sci. 66: 166–175.

    Google Scholar 

  • Shelton, G., 1970. The regulation of breathing. In: W. S. Hoar & D. J. Randall (eds), Fish Physiology, Vol. 4. Academic Press, New York: 293–359.

    Google Scholar 

  • Smith, W. L., 1963. Viable algal cells from the gut of gizzard shad Dorosoma cepedianum (Le Sueur). Proc. Okla. Acad. Sci. 43: 148–149.

    Google Scholar 

  • Smith, R. E. & J. Kalff, 1982. Size dependent phosphorus uptake kinetics and cell quota in phytoplankton. J. Phycol. 18: 275–284.

    Google Scholar 

  • Spataru, P., 1976. The feeding habits of Tilapia galilae (Artedi) in Lake Kinneret (Israel). Aquaculture 9: 47–59.

    Google Scholar 

  • Spataru, P. & M. Zorn, 1976. Some aspects of natural food and feeding of Tilapia galilae (Artedi) and T. aurea (Steindachner) in Lake Kinneret. Bamidgeh 28: 12–17.

    Google Scholar 

  • Spataru, P. & M. Zorn, 1978. Food and feeding habits of Tilapia aurea Steindachner (Cichlidae) in Lake Kinneret (Israel). Aquaculture 13: 67–79.

    Google Scholar 

  • Spodniewska, I. & A. Hillbricht-Ilkowska, 1973. Experimentally increased fish stock in the pond type Lake Warniak. VI. Biomass and Production of phytoplankton. Ekol. pol. 21(32): 519–532.

    Google Scholar 

  • Starostka, V. J. & R. L. Applegate, 1970. Food selectivity of bigmouth buffalow, Ictiobus cyprinellus, in Lake Poinsett, South Dakota. Trans. am. Fish. Soc. 99: 571–576.

    Google Scholar 

  • Steele, J. H., 1974. The structure of marine ecosystems. Harvard University Press, Cambridge, 128 pp.

    Google Scholar 

  • Stenson, J. A. E., 1972. Fish predation effect on the species composition of the zooplankton community in eight small forest lakes. Rep. Inst. Freshw. Res. Drottningholm 52: 132–148.

    Google Scholar 

  • Stenson, J. A. E., 1978. Differential predation by fish on two species of Chaoborus (Diptera, Chaoboridae). Oikos 31: 98–101.

    Google Scholar 

  • Stenson, J. A. E., 1980. Predation pressure from fish on two Chaoborus species as related to their visibility. In: W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The Univ. Press. of New England, Hanover, New Hampshire, USA: 618–622.

    Google Scholar 

  • Stenson, J. A. E., 1982. Fish impact on rotifer community structure. Hydrobiologia 87: 57–64.

    Google Scholar 

  • Stenson, J. A. E., 1983. Changes in the relative abundance of Polyarthra vulgaris and P. dolichoptera, following the elimination of fish. Hydrobiologia 104: 269–273.

    Google Scholar 

  • Stenson, J. A. E., T. Bohlin, L. Henrickson, B. I. Nilsson, H. G. Nyman, H. G. Oscarson & P. Larson, 1978. Effects of fish removal from a small lake. Verh. int. Ver. Limnol. 20: 794–801.

    Google Scholar 

  • Straškraba, M., 1965. The effect of fish on the number of invertebrates in ponds and streams. Mitt. int. Ver. Limnol. 13: 106–127.

    Google Scholar 

  • Straškraba, M., 1967. Quantitative study on the littoral zooplankton of Poltruba Backwater with an attempt to disclose the effect of fish. Rozpr. Csl. Akad. Ved. 77: 7–34.

    Google Scholar 

  • Strauss, R. E., 1979. Reliability estimates for Ivlev's electivity index, the forage ratio, and a proposed linear index of food selection. Trans. am. Fish. Soc. 108: 344–352.

    Google Scholar 

  • Suffern, J. S., 1973. Experimental analysis of predation in a freshwater system. Ph.D. Thesis, Yale Univ.

  • Susta, J., 1938. Food of the carp and other pond fish. [Vyziva Kapra e jeho druziny rybnicne]. 2nd Edition. in Czech, Praha.

  • Svardson, G., 1976. Interspecific population dominance in fish communities of Scandinavian lakes. Rep. Inst. Freshw. Res. Drottningholm 55: 144–171.

    Google Scholar 

  • Szlauer, L., 1965. The refuge ability of plankton animals before plankton eating animals. Pol. Arch. Hydrobiol. 13(26): 89–95.

    Google Scholar 

  • Tamura, T., 1957. A study of visual perception in fish, especially on resolving power and accomodation. Bull. Japan Soc. Sci. Fish 22: 536–557.

    Google Scholar 

  • Thomson, J. M., 1966. The mullets. Oceanogr. Mar. Biol. Ann. Rev. 4: 301–335.

    Google Scholar 

  • Tinbergen, L., 1960. The dynamics of insect and bird population in pine woods. Arch. Neerl. Zool. 13: 259–473.

    Google Scholar 

  • Vanderploeg, H. A. & D. Scavia, 1979. Two electivity indices for feeding with special reference to zooplankton grazing. J. Fish. Res. Bd Can. 36: 362–365.

    Google Scholar 

  • Velasquez, G. T., 1939. On the viability of algae obtained from the digestive tract of the gizzard shad, Dorosoma cepedianum (Le Sueur). Am. Middl. Nat. 22: 376–412.

    Google Scholar 

  • Vinyard, G. L., 1979. An ostracod (Cypriodopsis vidua) can reduce predation from fish by resisting digestion. Am. Middl. Nat. 102: 188–190.

    Google Scholar 

  • Vinyard, G. L., 1980. Differential prey vulnerability and predator selectivity: the effects of evasive prey on sunfish (Lepomis) predation. Can. J. Fish. aquat. Sci. 37: 2294–2299.

    Google Scholar 

  • Vinyard, G. L. & W. J. O'Brien, 1975. Dorsal light response as an index of prey preference in bluegill (Lepomis macrochirus). J. Fish. Res. Bd Can. 32: 1860–1863.

    Google Scholar 

  • Vinyard, G. L. & W. J. O'Brien, 1976. Effects on light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). Can. J. Fish. Res. Bd Can. 33: 2845–2849.

    Google Scholar 

  • Vinyard, G. L., R. W. Drenner & D. A. Hanzel, 1982. Feeding success of hatchery-reared Kokanee salmon when presented with zooplankton prey. Prog. Fish. Cult. 44: 37–39.

    Google Scholar 

  • Volkova, L. A., 1973. The effects of light intensity on the availability of food organisms to some fishes of Lake Baikal. J. Ichthyol. 13: 591–602.

    Google Scholar 

  • Voropaev, N. V., 1968. Morfologiceskie priznaki, pitanie i nekotorye rybovodnye pokazateli tolstolobikov i ich gibridov. In: G. V. Nikolskij (ed.), Novye issledovanija po ekologii i razvedeniju rastitelnojadnych ryb, Izd. Nauka, Moskva: 206–217.

    Google Scholar 

  • Vovk, P. S., 1974. The possibilities of using silver carp Hypophthalmichthys molitrix (Val.) to increase the fish productivity and to decrease the eutrophication of the Dniepr reservoirs. [O vozmoznosti ispolzovanija belogo tolstolobika (Hypophthalmichthys molitrix (Val.)) dla povysenija ryboproduktivnosti i snizenija urovnija evtrofikacii Dneprovskich vodochranilisc]. Vopr. Ikhtiol. 14: 406–414.

    Google Scholar 

  • Walter, E., 1895. Uber die Moglichkeit einer biologischen Bonitierung von Tiechen. Munchen.

  • Walters, V., 1966. On the dynamics of filter feeding by the wavyback skipjack (Euthynnus affinis). Bull. mar. Sci. 16: 209–221.

    Google Scholar 

  • Ware, D. M., 1971. Predation by rainbow trout (Salmo gairdnert): the effect of experience. J. Fish. Res. Bd Can. 28: 1847–1852.

    Google Scholar 

  • Ware, D. M., 1972. Predation by rainbow trout (Salmo gairdneri): the influence of hunger, prey density, and prey size. J. Fish. Res. Bd Can. 29: 1193–1201.

    Google Scholar 

  • Ware, D. M., 1973. Risk of epibenthic prey to predation by rainbow trout (Salmo gairdneri). J. Fish. Res. Bd Can. 30: 787–797.

    Google Scholar 

  • Ware, D. M., 1975. Growth, metabolism and optimal swimming speed of a pelagic fish. J. Fish. Res. Bd Can. 32: 33–41.

    Google Scholar 

  • Warshaw, S. J., 1972. Effect of alewives (Alosa pseudoharengus) on the zooplankton of Lake Wononskopomuc, Connecticut, Limnol. Oceanogr. 17: 816–825.

    Google Scholar 

  • Webb, P. W. & J. M. Skadsen, 1980. Strike tactics of Esox. Can. J. Zool. 58: 1462–1469.

    Google Scholar 

  • Wegleńska, T., 1971. The influence of various concentrations of natural food on the development, fecundity and production of planktonic crustacean filtrators. Ekol. pol. 19: 427–473.

    Google Scholar 

  • Wegleńska, T., K. Dusoge, J. Ejsmont-Karabin, I. Spodniewska & J. Zachwieja, 1979. Effect on winter-kill and changing fish stock on the biocenose of the pond-type Lake Warniak. Ekol. pol. 27(1): 39–70.

    Google Scholar 

  • Weimann, R., 1938. Planktonuntersuchungen in niederschlesischem Karpfenzuchtgebiet. Z. Fischerei 36: 109–183.

    Google Scholar 

  • Weimann, R., 1939. Uber Plankton, Dungung and Fischertrage in niederschlesischen Karpfenteichen. Arch. Hydrobiol. 34: 659–693.

    Google Scholar 

  • Weimann, R., 1942. Zur Gliederung and Dynamik der Flachgewasser. Arch. Hydrobiol. 38: 481–524.

    Google Scholar 

  • Wells, L., 1970. Effects of alewife predation on zooplankton populations in Lake Michigan. Limnol. Oceanogr. 15: 556–565.

    Google Scholar 

  • Werner, E. E., 1972. On the breadth of diet in fishes. Ph.D. Thesis, Michigan State Univ.

  • Werner, E. E., 1974. The fish size, prey size, handling time relation in several sunfishes and some implications. J. Fish. Res. Bd Can. 31: 1531–1536.

    Google Scholar 

  • Werner, E. E., 1977. Species packing and niche complementarity in three sunfishes. Am. Nat. 111(975): 553–578.

    Google Scholar 

  • Werner, E. E. & D. J. Hall, 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55: 1042–1052.

    Google Scholar 

  • Werner, E. E. & D. J. Hall, 1976. Niche shifts in sunfishes: experimental evidence and significance. Science 191: 404–406.

    Google Scholar 

  • Werner, E. E. & D. J. Hall, 1977. Competition and habitat shift in two sunfishes (Centrarchidae). Ecology 58: 869–876.

    Google Scholar 

  • Werner, E. E., G. G. Mittelbach & D. J. Hall, 1981. The role of foraging profitability and experience in habitat use by bluegill sunfish. Ecology 62(1): 116–125.

    Google Scholar 

  • Werner, E. E., J. F. Gilliam, D. J. Hall & G. G. Mittelbach, 1983a. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64(6): 1540–1548.

    Google Scholar 

  • Werner, E. E., G. G. Mittelbach, D. J. Hall & J. F. Gilliam, 1983b. Experimental tests of optimal use in fish: the role of relative habitat profitability. Ecology 64(6): 1525–1539.

    Google Scholar 

  • Werner, E. E., D. J. Hall, D. R. Laughlin, D. J. Wagner, L. A. Wilsmann & F. C. Funk, 1977. Habitat partitioning in a freshwater fish community. J. Fish. Res. Bd Can. 34: 360–370.

    Google Scholar 

  • Windell, J. T., 1978. Digestion and the daily ration of fishes. In: S. D. Gerking (ed.), Ecology of Freshwater Fish Production. John Wiley and Sons, New York: 159–183.

    Google Scholar 

  • Wong, B. & F. J. Ward, 1972. Size selection of Daphnia pulicaria by yellow perch (Perca flavescens) fry in West Blue Lake, Manitoba. J. Fish. Res. Bd Can. 29: 1761–1764.

    Google Scholar 

  • Wright, D. I. & W. J. O'Brien, 1984. Modeling the planktivorous feeding selectivity of white crappie (Pomoxis annularis): a successful field test. Ecological Monographs 54: 65–98.

    Google Scholar 

  • Wright, D. I. & J. Shapiro, 1984. Nutrient reduction by biomanipulation: an unexpected phenomenon and its possible cause. Verh. int. Ver. Limnol. 22: xxx-xxx.

  • Wright, D. I., W. J. O'Brien & C. Luecke, 1983. A new estimate of zooplankton retention by gill rakers and its ecological significance. Trans. am. Fish. Soc. 112: 638–646.

    Google Scholar 

  • Wright, D., W. J. O'Brien & G. L. Vinyard, 1980. Adaptative value of vertical migration: a simulation model argument for the predation hypothesis. In: W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The Univ. Press of New England, Hanover, New Hampshire, USA: 138–147.

    Google Scholar 

  • Zaret, T. M., 1969. Predation-balanced polymorphism of Ceriodaphnia cornuta Sars. Limnol. Oceanogr. 14: 301–303.

    Google Scholar 

  • Zaret, T. M., 1971. The distribution, diet, and feeding habits of the atherinid fish Melaniris chagresi in Gatun Lake, Panama, Canal Zone. Copeia 1971: 341–343.

    Google Scholar 

  • Zaret, T. M., 1972a. Predator-prey interaction in a tropical lacustrine ecosystem. Ecology 53: 248–257.

    Google Scholar 

  • Zaret, T. M., 1972b. Predators, invisible prey, and the nature of polymorphism in the Cladocera (Class Crustacea). Limnol. Oceanogr. 17: 171–184.

    Google Scholar 

  • Zaret, T. M., 1980. Predation and Freshwater Communities. Yale Univ. Press, New Haven, 187 pp.

    Google Scholar 

  • Zaret, T. M. & W. C. Kerfoot, 1975. Fish predation on Bosmina longirostris: Body-size selection versus visibility selection. Ecology 56: 232–237.

    Google Scholar 

  • Zaret, T. M. & J. S. Suffern, 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21: 804–813.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzaro, X. A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146, 97–167 (1987). https://doi.org/10.1007/BF00008764

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008764

Keywords

Mots clés

Navigation