Skip to main content
Log in

Bacterial secondary production and it relation with primary production in the Embalse del Río III Reservoir, Argentina

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

During an annual period the bacterial biomass (epifluorescence) and secondary production (methyl-3H-thymidine incorporation), as well as biomass (Chlorophyll) and algal primary production (incorporation of NaH14CO3) were studied in the Embalse del Río III Reservoir, Argentina. The relations between these variables and their responses to seasonal changes in water temperature were analyzed. A close relationship in seasonal patterns of algal primary production and bacterial secondary production was observed, with the estimated rates of bacterial production similar to that obtained by other authors in eutrophic lakes. Bacterial production was 17 to 46% of the primary production, thus, at 60% assimilation efficiency, the bacterioplankton would consume 28 to 77 % of the total fixed carbon. Seasonal trends in algal primary production and bacterial secondary production were mainly affected by temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azam, F., T. Fenchel, J. G. Gray, L. A. Meyer-Riel & F. Thigstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Bell, R. T. & J. Kuparinen, 1984. Assessing phytoplankton and bacterioplankton production during early spring in lake Erken, Sweden. Appl. envir. Microbiol. 48: 1221–1230.

    Google Scholar 

  • Bell, R. T., G. M. Ahlgren & I. Ahlgren, 1983. Estimating bacterioplankton production by measuring (3H)-thymidine incorporation in a eutrophic Swedish lake. Appl. envir. Microbiol. 45: 1709–1721.

    Google Scholar 

  • Brock, T. D. & J. Clyne, 1984. Significance of algal excretory products for growth of epilimnetic bacteria. Appl. envir. Microbiol. 47: 731–734.

    Google Scholar 

  • Calow, P., 1977. Conversion efficiencies in heterotrophic organisms. Biol. Rev. 52: 385–409.

    Google Scholar 

  • Ducklow, H. W. & D. L. Kirchman, 1983. Bacterial dynamics and distribution during a spring diatom bloom in the Hudson River plume, USA. J. Plank. Res. 5: 333–355.

    Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120.

    Article  Google Scholar 

  • Güde, H., B. Haibel & H. Muller, 1985. Development of planktonic bacterial populations in a water column of Lake Constance (Bodensee-Obersee). Arch. Hydrobiol. 105: 59–77.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Hobbie, J. E. & R. T. Wright, 1979. An assessment of quantitative measurements of aquatic microbes. Arch. Hydrobiol. Beih. Ergeb. Limnol. 13: 85–95.

    Google Scholar 

  • Jones, J. G., 1979. A guide to methods for estimating microbial numbers and biomass in fresh water. Freshwater Biological Association, Windermere. 112 pp.

    Google Scholar 

  • Kirchman, D., H. Ducklow & R. Mitchell, 1982. Estimates of bacterial growth rates and biomass. Appl. envir. Microbiol. 44: 1296–1307.

    Google Scholar 

  • Larsson, U. & A. Hagström, 1979. Phytoplankton exudate release as an energy source for growth of pelagic bacteria. Mar. Biol. 52: 199–206.

    Article  Google Scholar 

  • Larsson, U. & A. Hagström, 1982. Fractionated phytoplankton primary production exudate release and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67: 57–70.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Vertical distribution of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.

    Google Scholar 

  • Lovell, C. R. & A. Konopka, 1985. Primary and bacterial production in two dimictic Indiana lakes. Appl. envir. Microbiol. 49: 485–491.

    Google Scholar 

  • Mariazzi, A. A. & M. Romero, 1983. Estimation of the heterotrophic activity in three ecosystems with different trophic degrees. Ecosur. 10: 61–77.

    Google Scholar 

  • Nagata, T., 1987. Production rate of planktonic bacteria in the north basin of Lake Biwa, Japan. Appl. envir. Microbiol. 53: 2872–2882.

    Google Scholar 

  • Nakanishi, M., A. A. Mariazzi, V. H. Conzonno, E. Claverie, M. A. Di Siervi & M. Romero, 1985. Primary production studies on a reservoir, Embalse del Rio Tercero, R. Argentina. Mem. Fac. Sci., Kyoto Univ. Ser. Biol. 10: 49–62.

    Google Scholar 

  • Newell, S. Y. & R. D. Fallon, 1982. Bacterial productivity in the water column and sediments of the Georgia (USA) coastal zone: estimates via direct counting and parallel measurement of thymidine incorporation. Microb. Ecol. 8: 33–46.

    Article  Google Scholar 

  • Pedrós-Alió, C. & T. D. Brock, 1982. Assessing biomass and production of bacteria in eutrophic Lake Mendota, Wisconsin. Appl. envir. Microbiol. 44: 203–218.

    Google Scholar 

  • Riemann, B., 1985. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl. envir. Microbiol. 50: 187–193.

    Google Scholar 

  • Scavia, D., G. A. Laird & G. Fahnenstiel, 1986. Production of planktonic bacteria in Lake Michigan. Limnol. Oceanogr. 31: 612–626.

    Google Scholar 

  • Scavia, D. & G. A. Laird, 1987. Bacterioplankton in Lake Michigan: Dynamics, controls and significance to carbon flux. Limnol. Oceanogr. 32: 1017–1033.

    Google Scholar 

  • Søndergaard, M., B. Riemann & N. O. G. Jørgensen, 1985. Extracellular organic carbon (EOC) released by phytoplankton and bacterial production. Oikos 45: 323–332.

    Google Scholar 

  • Steemann Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Int. Expl. Mar. 18: 117–140.

    Google Scholar 

  • Watson, S. W., T. J. Novitsky, H. L. Quinby & F. W. Valois, 1977. Determination of bacterial number and biomass in the marine environment. Appl. envir. Microbiol. 33: 940–954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariazzi, A.A., Di Siervi, M.A. & Donadelli, J.L. Bacterial secondary production and it relation with primary production in the Embalse del Río III Reservoir, Argentina. Hydrobiologia 211, 57–64 (1991). https://doi.org/10.1007/BF00008617

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008617

Key words

Navigation