Hydrobiologia

, Volume 211, Issue 1, pp 19–32 | Cite as

Microbial utilization of coral mucus in long term in situ incubation over a coral reef

  • Eveline Vacelet
  • Bernard A. Thomassin
Article

Abstract

The purpose of this study was to assess degradation and utilization of the mucus produced by 3 coral reef Anthozoa (Sarcophyton, Fungia and Acropora) by microorganisms. This was achieved by carrying out long term in situ incubations at Nouméa lagoon (New Caledonia).

The microbial population including bacterial and eukaryotic cells was monitored by cell counts, cultures of mucus degraders, and by estimation of microbial activity from the pool of adenylates and enzymatic activity. In addition the chemical composition (C and N) of the mucus was monitored and its morphological features were observed by scanning electron microscope (SEM).

Only slight differences were found between the 3 types of mucus studied. On the whole, they follow the same pattern of change. After a short bacterial growth phase (4 days), a bloom of eukaryotes (Flagellates, Ciliates and Diatoms) was observed. This eukaryote population remained constant for at least 10 days. A similar pattern has been described in the breakdown of detritus of plant origin.

Several observations suggest that bacteria utilize only certain components of mucus, the most widely used being proteins, triglycerides and wax esters; these latter two compounds are known to be the dissolved photosynthetic products released by zooxanthellae during mucus secretion. Neither bacteria nor eukaryotes completely degrade the mucus web even after 21 days of incubation. The likelihood that mucus excretion is a defensive reaction against physical and chemical stresses might explain why mucus is a poor, or even inhibiting medium for the bacterial degraders isolated from the mucus itself.

Key words

coral mucus bacterial utilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson, A. A., L. Muscatine, 1974. Wax in coral mucus: Energy transfer from corals to reef fishes. Limnol. Oceanogr. 19: 810–814.Google Scholar
  2. Coffroth, M. A., 1988. The role and fate of mucous sheet produced by reef coelenterates. In Proc. 6th int. coral Reef Congr. Townsville, abstr.Google Scholar
  3. Coles, S. L., R. Strathmann, 1973. Observations on coral mucus ‘flocs’ and their potential trophic significance. Limnol. Oceanogr. 18: 673–678.Google Scholar
  4. Coll, J. C., B. F. Bowden, D. M. Tapiolas, 1982. In situ isolation of allelo-chemicals released from soft corals (Coelenterata: Octocorallia): a totally submersible sampling apparatus. J. Exp. Mar. Biol. Ecol. 60: 293–299.CrossRefGoogle Scholar
  5. Crossland, C. J., 1987. In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6: 35–42.CrossRefGoogle Scholar
  6. Crossland, C. J., D. J. Barnes, M. A. Borowitzka, 1980. Diurnal lipid and mucus production in the Staghorn Coral Acropora acuminata. Mar. Biol. 60: 81–90.CrossRefGoogle Scholar
  7. Daumas, R., B. A. Thomassin, 1977. Protein fractions in coral and zoantharian mucus: possible evolution in coral reef environments. In Proc. 3rd int. Coral Reef Symp., Rosenstiel School of Marine and Atmospheric Science, Univ. Miami, Miami, U.S.A.: 517–523.Google Scholar
  8. Daumas, R., R. Galois, B. A. Thomassin, 1982. Biochemical composition of soft and hard coral mucus on a new caledonian lagoonal reef. In Proc. 4th int. Coral Reef Symp., Univ. Philippines, Manila, 1981, 2: 59–67.Google Scholar
  9. Ducklow, H. W., R. Mitchell, 1979a. Composition of mucus released by coral reef coelenterates. Limnol. Oceanogr. 24: 706–714.Google Scholar
  10. Ducklow, H. W., R. Mitchell, 1979b. Bacterial populations and adaptations in the mucus layers on living corals. Limnol. Oceanogr. 24: 715–725.Google Scholar
  11. Ferguson, R. L., E. N. Buckley, A. V. Palumbo, 1984. Response of marine bacterioplankton to differencial filtration and confinement. Appl. Envir. Microbiol. 47: 49–55.Google Scholar
  12. Herndl, G. J., B. Velimirov, 1986. Microheterotrophic utilization of mucus released by the Mediterranean coral Cladocora cespitosa. Mar. Biol. 90: 363–369.CrossRefGoogle Scholar
  13. Humble, M. W., A. King, I. Phillips, 1977. APIZYM: a simple rapid system for detection of bacterial enzymes. J. Clin. Pathol. 30: 275–277.PubMedGoogle Scholar
  14. Johannes, R. E., 1967. Ecology of organic aggregates in the vicinity of a coral reef. Limnol. Oceanogr. 12: 189–195.Google Scholar
  15. Karl, M., O. Holm-Hansen, 1978. Methodology and measurement of adenylate energy charge ratios in environmental samples. Mar. Biol. 48: 185–197.CrossRefGoogle Scholar
  16. Kato, M., 1987. Mucus-sheet formation and discoloration in the reef-building coral, Porites cylindrica: effects of altered salinity and temperature. Galaxea 6: 1–16.Google Scholar
  17. Krupp, D. A., 1982. The composition of the mucus from the mushroom coral, Fungia scutaria. In Proc. 4th int. Coral Reef Symp., Univ. Philippines, Manila, 1981 2: 69–73Google Scholar
  18. Krupp, D. A., 1984. Mucus production by corals exposed during an extreme low tide. Pac. Sci. 38: 1–11.Google Scholar
  19. La Barre, S. C., J. C. Coll, P. W. Sammarco, 1986. Competitive strategies of soft corals (Coelenterata: octocorallia): 3 spacing and aggressive interactions between alcyonaceans. Mar. Ecol. Prog. Ser. 28: 147–156.Google Scholar
  20. Landry, M. R., L. N. Haass, V. L. Fagerness, 1984. Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaï. Mar. Ecol. Prog. Ser. 16: 127–133.Google Scholar
  21. Linley, E. A. S., R. C. Newell, S. A. Bosma, 1981. Heterotrophic utilization of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida). I. Development of microbial communities associated with the degradation of kelp mucilage. Mar. Ecol. Prog. Ser. 4: 31–41.Google Scholar
  22. Lynch, J. M., N. J. Poole, 1980. Microbial Ecology. A conceptual approach. Blackwell Scientific Publ. 266 pp.Google Scholar
  23. Marshall, N., 1973. Notes on mucus and zooxanthellae discharged from reef corals. Proc. 1st int. Symp. Corals and coral reefs, Mandapain Comp., 12–16 January 1969, p. 59–65.Google Scholar
  24. Means, J. C., A. C. Sigleo, 1986. Contribution of coral reef mucus to the colloidal organic pool in the vicinity of Discovery Bay, Jamaica, W.I. Bull. mar. Sci. 39: 110–118.Google Scholar
  25. Meikle, P., G. N. Richards, D. Yellowlees, 1988. Structural investigations on the mucus from six species of coral. Mar. Biol. 99: 187–193.CrossRefGoogle Scholar
  26. Monget, D., 1978. Mise au point d'une microméthode de détection et de mesure d'activités enzymatiques (APIZYM). Résultats obtenus dans différents domaines d'application. Thése Docteur Ingénieur, Univ. Lyon.Google Scholar
  27. Moriarty, D. J. W., P. C. Pollard, W. G. Hunt, 1985a. Temporal and spatial variation in bacterial production in the water column over a coral reef. Mar. Biol. 85: 285–292.CrossRefGoogle Scholar
  28. Moriarty, D. J. W., P. C. Pollard, D. M. Alongi, C. R. Wilkinson, J. S. Gray, 1985b. Bacterial productivity and trophic relationships with consumers on a coral reef (MECOR 1). In: Proc. 5th int. Coral Reef Congr., E.P.H.E., Tahiti 3: 457–462.Google Scholar
  29. Muscatine, L., 1973. Nutrition of corals. In Jones O. A., Endean R. (eds). Biology and geology of coral reefs, Vol. 2: Biology, Academic Press, New-York: 77–115.Google Scholar
  30. Newell, R. C., E. A. S. Linley, M. I. Lucas, 1983. Bacterial production and carbon conversion based on salt marsh plant debris. Estuar. coast. Shelf Sci. 17: 405–419.CrossRefGoogle Scholar
  31. Pascal, H., 1981. Valeur nutritive des mucus produits par deux anthozoaires récifaux du golfe d'Aqaba (Mer Rouge) vis à vis des populations bactériennes. Thèse 3ème cycle, Fac. Sci. Marseille-Luminy, Univ. Aix-Marseille II, 112 pp.Google Scholar
  32. Pascal, H., E. Vacelet, 1981. Bacterial utilization of mucus on the coral reef of Aqaba (Red Sea). In Proc. 4th int. Coral Reef Symp., Univ. Philippines, Manila, 1: 669–677.Google Scholar
  33. Patton, J. S., S. Abraham, A. A. Benson, 1977. Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar. Biol. 44: 235–247.CrossRefGoogle Scholar
  34. Patton, J. S., J. F. Battey, M. W. Rigler, J. W. Porter, C. C. Black, J. E. Burris, 1983. A comparison of the metabolism of bicarbonate 14C and acetate 1−14C and the variability of species lipid compositions in reef corals. Mar. Biol. 75: 121–130.CrossRefGoogle Scholar
  35. Paul, J. H., M. F. DeFlaun, W. H. Jeffrey, 1986. Elevated levels of microbial activity in the coral surface microlayer. Mar. Ecol. Prog. Ser. 33: 29–40.Google Scholar
  36. Richards, G. N., P. J. Meikle, D. Yellowless, 1983. Preliminary investigations into the chemical nature of mucus from the staghorn coral (Acropora formosa). In Proc. Great Barrier Reef inaugural Conf., Townsville, Aug. 29–2 Sept. 1983, ed. Baker et al., 353–359.Google Scholar
  37. Richman, S., Y. Loya, L. B. Slobodkin, 1975. The rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens. Limnol. Oceanogr. 20: 918–923.Google Scholar
  38. Rublee, P. A., H. R. Lasker, M. Gottfried, M. R. Roman, 1980. Production and bacterial colonization of mucus from the soft coral Briarium asbestinum. Bull. mar. Sci. 30: 888–893.Google Scholar
  39. Sammarco, P. W., J. C. Coll, S. La Barre, 1985. Competitive strategies of soft corals (Coelenterata: Octocorallia). II. Variable defensive responses and susceptibility to scleractinian corals. J. Exp. Mar. Biol. Ecol. 91: 199–215.CrossRefGoogle Scholar
  40. Vacelet, E., 1985. Quelques exemples d'utilisation de l'APIZYM en écologie. Rapp. Comm. int. Mer. Médit. 29: 23–24.Google Scholar
  41. Vacelet, E., B. A. Thomassin, 1985. Utilization of mucus of some coral species of New Caledonia by bacteria in in situ experiments. In Proc. 5th int. Coral Reef Congr., E.P.H.E., Tahiti: 2: 385.Google Scholar
  42. Wiebe, W. J., L. R. Pomeroy, 1972. Microorganisms and their association with aggregates and detritus in the sea: a microscopic study. In Melchiorri-Santolini U., Hopton J. W. (eds) ‘Detritus and its role in aquatic ecosystems’. Proc. IBP-UNESCO Symp., Mem. Ist. Ital. Idrobiol. 29 (suppl.): 325–352.Google Scholar
  43. Wipple, C. E., 1901. Changes that take place in bacterial contents of waters during transportation. Technol. Q. Proc. Soc. Arts 14: 21–29.Google Scholar
  44. Witzel, K. P., 1979. The adenylate energy charge as a measure of microbial activities in aquatic habitats. Arch. Hydrobiol., Beih. Ergebn. Limnol. 12: 146–165.Google Scholar
  45. Zimmerman, R., 1977. Estimation of bacterial number and biomass by epifluorescence microscopy and scanning electron microscopy. In G. Rheinheimer (ed.) ‘Microbial Ecology of a brackish water environment’. Ecological Studies 25, Springer Verlag: 103.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Eveline Vacelet
    • 1
  • Bernard A. Thomassin
    • 1
  1. 1.Centre d'Océnologie de Marseille, Station marine d'EndoumeMarseilleFrance

Personalised recommendations