Skip to main content
Log in

The effect of current on the distribution of diatoms settling on submerged glass slides

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Glass microscope slides were submerged for two to six week periods at selected sites in a small, spring-fed stream near Lennoxville, Quebec. Slides were oriented parallel and perpendicular to the current. Qualitative and quantitative data from transects across slides show that diatoms are randomly distributed on slides perpendicular to the current but not on slides oriented parallel to the current. In the later case, most individuals first settled near the upstream or downstream edge of the slide. Non-random distribution is most pronounced on slides containing Cocconeis placentula. This species and two others, Achnanthes linearis and A. minutissima, are abundant and determine most distribution patterns found on slides. Preference of diatoms for the edges of slides appears to be affected by current. We propose a model, based upon water flow, to explain the preferential distribution of diatoms on slides oriented parallel to the current. Light appears not to affect settling patterns to a great extent in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum, J. L., 1960. Algal populations in flowing waters. Spec. Publs. Pymatuning Lab. Fld. Biol. Vol. 2: 11–21.

    Google Scholar 

  • Butcher, R. W., 1947. Studies on the ecology of river, VII. The algae of organically enriched waters. J. Ecol., 35: 186–191.

    Google Scholar 

  • Cattaneo, A., 1978. The microdistribution of epiphytes on the leaves of natural and artificial macrophytes. Br. Phycol. J., 13: 183–188.

    Google Scholar 

  • Cattaneo, A., Ghittori, S. & Vendegna, V., 1975. The development of benthic phytocoenoses on artificial substrates in the Ticino River. Oecologia (Berl.), 19: 315–327.

    Google Scholar 

  • Conover, W. J., 1971. Practical non-parametric statistics. John Wiley & Sons Inc., N.Y. 462 pp.

    Google Scholar 

  • Douglas, B., 1958. The ecology of attached diatoms and other algae in a small stony stream. J. Ecol., 46: 295–322.

    Google Scholar 

  • Düringer, I., 1958. Über die Verteilung epiphytischer Algen auf den Blättern Wasserbewohnender Angiospermen. Öst. Bot. Z., 105: 1–43.

    Article  Google Scholar 

  • Eddy, S., 1934. A study of freshwater plankton communities. Illinois biol. Monogr., 12: 1–93.

    Google Scholar 

  • Eloranta, P. & S. Kunnas, 1979. The growth and species communities of the attached algae in a river system in Central Finland. Arch. Hydrobiol. 86: 27–44.

    Google Scholar 

  • Evans, H. L., 1968. Laminar Boundary-Layer Theory. Addison-Wesley Pub. Co.

  • Fjerdingstad, E., 1964. Pollution of streams estimated by benthal phytomicro-organisms. I. A saprobic system based on communities of organisms and ecological factors. Int. Rev. Ges. Hydrobiol. 49(1): 63–131.

    Google Scholar 

  • Fritsch, F. E., 1929. The encrusting algal communities of certain fast flowing streams. New Phytol. 28(3): 165–196.

    Google Scholar 

  • Gessner, F., 1953. Die Limnologie des Naturschutzgebietes Seeon. Arch. Hydrobiol., 47(4): 553–624.

    Google Scholar 

  • Godward, M. B., 1934. An investigation of the causual distribution of algal epiphytes, Beih. Bot. Zbl., 52: 506–539.

    Google Scholar 

  • Godward, M. B., 1937. An ecological and taxonomic investigation of the littoral algal flora of Lake Windermere. J. Ecol., 25: 496–568.

    Google Scholar 

  • Hansmann, E. & Phinney, H., 1973. Effects of logging on periphyton in coastal streams in Oregon. Ecology, 54(1): 195–199.

    Google Scholar 

  • Hinze, J. O., 1975. Turbulence, 2nd ed. McGraw-Hill, Inc. New York.

    Google Scholar 

  • Hynes, H. B. N., 1970. The ecology of running waters. Univ. of Toronto Press, Toronto.

    Google Scholar 

  • Jaag, O. & Ambuhl, H., 1963. The effect of current on the composition of biocoenoses in flowing water streams. Int. J. Air. Wat. Poll. Pergamon Press, vol. 7, pp. 317–330.

  • Patrick, R., 1949. A proposed biological measure of stream conditions based on a survey of the Conestoga Basin, Lancaster County, Pennsylvania. Proc. Ac. Nat. Sc. Phil., 101: 277–341.

    Google Scholar 

  • Patrick, R., Hohn, M. & Wallace, J., 1954. A new method for determining the pattern of the diatom flora. Notul. Nat. Acad. Phil., #259: 1–12.

  • Patrick, R. & Reimer, C., 1966. The diatoms of the United States. Monographs Acad. Natur. Sci. Phil., Vols. I, II.

  • Round, F. F., 1965. The biology of algae. Edward Arnold Ltd., London.

    Google Scholar 

  • Whitford, L. A., 1960. The current effect and growth of freshwater algae. Trans. Amer. Micros. Soc., 79(3): 302–309.

    Google Scholar 

  • Whitford, L. A. & G. J. Schumacher, 1961. Effect of current on mineral uptake and respiration by a freshwater alga. Limnol. Oceanogr. 6: 423–425.

    Google Scholar 

  • Whitford, L. A., 1964. Effect of current on respiration and mineral uptake in Spirogyra and Oedogonium. Ecology., 45: 168–170.

    Google Scholar 

  • Whiller, A., 1922. Der Aufwuchs der Unterwasserpflanzen. Verh. int. Verein Limnol., 1: 37–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munteanu, N., Maly, E.J. The effect of current on the distribution of diatoms settling on submerged glass slides. Hydrobiologia 78, 273–282 (1981). https://doi.org/10.1007/BF00008524

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008524

Keywords

Navigation