Advertisement

Hydrobiologia

, Volume 175, Issue 1, pp 65–82 | Cite as

An integrated approach to hydropower impact assessment

II. Submerged macrophytes in some Norwegian hydro-electric lakes
  • Bjørn Rørslett
Article

Abstract

The submerged aquatic vegetation of 17 Norwegian lakes is described and related to the environmental impacts that result from hydro-electric power (HEP) use of these lakes. Largely based upon physiognomical features, three main community types are discerned. These are denoted as (a) shallow-water, (b) mid-depth, and (c) deep-water community, respectively. The aquatic macrophytes are classified into a plant strategy framework. This classification suggests that these macrophytes frequently exhibit combined traits of the ‘S’ (stress-tolerating), ‘R’ (ruderal), and ‘C’ (competitive) strategies. A plant-strategy index for the lakes is derived from the species classification and related to their HEP use.

Broadly, the response features of hydrolake vegetation are: (1) a decline in species richness; (2) the gradual disappearance of the shallow-water and mid-depth communities; (3) a conspicuous absence of vascular submerged macrophytes in storage hydrolakes when lake levels change more than 7 m annually, and; (4) an increased incidence of species possessing plant strategies of the ruderal (R) type. The implications of these results for an environmental impact assessment of hydropower schemes are discussed.

Key words

submerged macrophytes spatial niches vertical distribution environmental impact assessment hydropower disturbance stress water-level fluctuation reservoirs hydrolakes Norway 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almquist, E., 1929. Upplands flora och vegetation. Acta Phytogeogr. Suec. 1: 1–624.Google Scholar
  2. Austin, M. P., 1985. Continuum concept, ordination methods, and niche theory. Annu. Rev. Ecol. Syst. 16: 39–61.Google Scholar
  3. Boston, H. L., 1986. A discussion of the adaptations for carbon acquisition in relation to the growth strategy of aquatic isoetids. Aquat. Bot. 26: 259–270.Google Scholar
  4. Brown, J. M. A., 1975. Ecology of macrophytes. In Jolly, V. H. & J. M. A. Brown (eds), New Zealand Lakes. Auckland University Press, Auckland: 244–262.Google Scholar
  5. Canfield, D. E., K. A. Langeland, S. B. Linda & W. T. Haller, 1985. Relations between water transparency and maximum depth of macrophyte colonization in lakes. J. Aquat. Plant Manage. 23: 25–28.Google Scholar
  6. Chambers, P. A. & J. Kalff, 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can. J. Fish. Aquat. Sci. 42: 701–709.Google Scholar
  7. Collins, L. W. & G. E. Likens, 1969. The effects of altitude on the distribution of aquatic plants in some lakes of New Hampshire, USA, Verh. int. Ver. Limnol. 17: 154–172.Google Scholar
  8. Davis, G. J. & M. M. Brinson, 1980. Responses of submersed vascular plant communities to environmental change. Report FWS/OBS-79/33, US Department of Interior, Washington D.C., 79 pp.Google Scholar
  9. Grime, J. P., 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester, 222 pp.Google Scholar
  10. Grubb, P. J., 1985. Plant populations and vegetation in relation to habitat, disturbance and competition: problems of generalization. In White, J. (ed.), The Population Structure of Vegetation. Junk, Dordrecht: 595–621.Google Scholar
  11. Henriques, P. R., 1987. Aquatic macrophytes. In Henriques, P. R. (ed.), Aquatic Biology and Hydroelectric Power Development in New Zealand. Oxford University Press, Oxford: 207–222.Google Scholar
  12. Hinneri, S., 1976. On the ecology and phenotypic plasticity of vascular hydrophytes in a sulphate-rich, acidotrophic freshwater reservoir, SW coast of Finland. Ann. Bot. Fenn. 13: 97–105.Google Scholar
  13. Hultén, E., 1971. Atlas över växternas utbredning i Norden. 2nd. ed. Generalstabens litografiska anstalts förlag, Stockholm, 531 pp.Google Scholar
  14. Huston, M., 1979. A general hypothesis of species diversity. Am. Nat. 113: 81–101.Google Scholar
  15. Hutchinson, G. E., 1975. A Treatise on Limnology. 3. Limnological Botany. Wiley, New York, 660 pp.Google Scholar
  16. Hvoslef, S. & B. Rørslett, 1986. Makrovegetasjon i norske innsjøer. I. Avgrensning av vannvegetasjon og regional forekomst. K. Norske Vidensk. Selsk. Mus. Rapp. Bot. Ser. 1986 (2): 60–75 [in Norwegian].Google Scholar
  17. Jensén, S., 1977. An objective method for sampling the macrophyte vegetation in lakes. Vegetatio 33: 107–118.Google Scholar
  18. Johnstone, I. M., 1986. Macrophyte management: an integrated perspective. New Zeal. J. Mar. Freshwat. Res. 20: 599–614.Google Scholar
  19. Keeley, J. E., 1982. Distribution of diurnal acid metabolism in the genus Isoetes. Am. J. Bot. 69: 254–257.Google Scholar
  20. Lohammar, G., 1965. The vegetation of Swedish lakes. Acta Phytogeogr. Suec. 50: 28–48.Google Scholar
  21. Maberly, S. C. & D. H. N. Spence, 1983. Photosynthetic inorganic carbon use by freshwater plants. J. Ecol. 71: 705–724.Google Scholar
  22. Mäkirinta, U., 1978. En neues ökomorphologisches lebensformen-system der aquatischen makrophyten. Phytocoenologia 4: 446–470.Google Scholar
  23. Nicklasson, A., 1979. Konsekvenser ur naturvårdssynspunkt av vattenståndsförändringar i oligotrofa sydsvenska sjöar. Statens Naturvårdsverk, Stockholm, PM 1185 (1979), 123 pp. [in Swedish, with English summary].Google Scholar
  24. Nilsson, C., 1981. Dynamics of the shore vegetation of a North Swedish hydro-electric reservoir during a 5-year period. Acta Phytogeogr. Suec. 69: 1–94.Google Scholar
  25. Pip, E. & K. Simmons, 1986. Aquatic angiosperms at unusual depths in Shoal Lake, Manitoba-Ontario. Can. Field-Nat. 100: 354–358.Google Scholar
  26. Prins, H. B. A., J. F. H. Snel, R. J. Helder & P. E. Zanstra, 1980. Photosynthetic HCO3 utilization and OH excretion in aquatic angiosperms. Plant Physiol. 66: 818–822.Google Scholar
  27. Quennerstedt, N., 1958. Effects of water level fluctuation on lake vegetation. Verh. int. Ver. Limnol. 13: 901–906.Google Scholar
  28. Roelofs, J. G. M., 1983. Impact of acidification and eutrophication on macrophyte communities in soft waters in the Netherlands. I. Field observations. Aquat. Bot. 17: 139–155.Google Scholar
  29. Roelofs, J. G. M., J. A. A. R. Schuurkes & A. J. M. Smits, 1984. Impact of acidification and eutrophication on macrophyte communities in soft waters in the Netherlands. II. Experimental studies. Aquat. Bot. 18: 389–411.Google Scholar
  30. Rørslett, B., 1977. Spredning av vasspest (Elodea canadensis Michx.) på Østlandet fram til 1976. Blyttia 35: 61–66 [in Norwegian].Google Scholar
  31. Rørslett, B., 1984. Environmental factors and aquatic macrophyte response in regulated lakes — a statistical approach. Aquat. Bot. 19: 199–220.Google Scholar
  32. Rørslett, B., 1985a. Death of submerged macrophytes — actual field observations and some implications. Aquat. Bot. 22: 7–19.Google Scholar
  33. Rørslett, B., 1985b. Regulation impact on submerged macrophytes in the oligotrophic lakes of Setesdal, South Norway. Verh. int. Ver. Limnol. 22: 2927–2936.Google Scholar
  34. Rørslett, B., 1987a. Statistics of the underwater light field: an empirical model. Int. Revue ges. Hydrobiol. 72: 1–25.Google Scholar
  35. Rørslett, B., 1987b. A generalized spatial niche model for aquatic macrophytes. Aquat. Bot. 29: 63–81.Google Scholar
  36. Rørslett, B., 1987c. Niche statistics of submerged macrophytes in Tyrifjord, a large oligotrophic Norwegian lake. Arch. Hydrobiol. 110: 283–308.Google Scholar
  37. Rørslett, B., 1988a. Aquatic weed problems in a hydroelectric river: the R. Otra, Norway. Regul. Rivers. 2: 25–37.Google Scholar
  38. Rørslett, B., 1988b. An integrated approach to hydropower impact assessment. I. Environmental features of some Norwegian hydro-electric lakes. Hydrobiologia 164: 39–66.Google Scholar
  39. Rørslett, B. & M. Agami, 1987. Downslope limits of aquatic macrophytes: a test of the transient niche hypothesis. Aquat. Bot. 29: 83–95.Google Scholar
  40. Rørslett, B. & S. Hvoslef, 1986. Makrovegetasjon i norske innsjøer. II. Empiriske art-areal relasjoner. K. Norske Vidensk. Selsk. Mus. Rapp. Bot. Ser. 1986 (2): 76–87 [in Norwegian].Google Scholar
  41. Rørslett, B., D. Berge & S. W. Johansen, 1986. Lake enrichment by submersed macrophytes: a Norwegian whole-lake experience with Elodea canadensis. Aquat. Bot. 26: 325–340.Google Scholar
  42. Rørslett, B., N. W. Green & K. Kvalvågnæs, 1978. Stereophotography as a tool in aquatic biology. Aquat. Bot. 4: 73–81.Google Scholar
  43. Rykiel, E. J., 1985. Towards a definition of ecological disturbance. Austr. J. Ecol. 10: 361–365.Google Scholar
  44. Samuelsson, G., 1934. Die Verbreitung der höheren Wasserpflanzen in Nordeuropa (Fennoskandia und Dänemark). Acta Phytogeogr. Suec. 6: 1–211.Google Scholar
  45. Sand-Jensen, K. & D. M. Gordon, 1986. Variable HCO3 affinity of Elodea canadensis Michaux in response to different HCO3 and CO2 concentrations during growth. Oecologia (Berl.) 70: 426–432.Google Scholar
  46. Sand-Jensen, K. & L. Rasmussen, 1978. Macrophytes and chemistry of acidic streams from lignite mining areas. Bot. Tidsskr. 72: 105–112.Google Scholar
  47. Seddon, B., 1972. Aquatic macrophytes as limnological indicators. Freshwat. Biol. 2: 107–130.Google Scholar
  48. Sheldon, R. B. & C. W. Boylen, 1977. Maximum depths inhabited by aquatic vascular plants. Am. Midl. Nat. 97: 248–254.Google Scholar
  49. Singer, R., D. A. Roberts & C. W. Boylen, 1983. The macrophytic community of an acidic lake in Adironack (New York, USA): a new depth record for aquatic angiosperms. Aquat. Bot. 16: 49–58.Google Scholar
  50. Smith, B. P., P. S. Maitland & S. M. Pennock, 1987. A comparative study of water level regimes and littoral benthic communities in Scottish lochs. Biol. Cons. 39: 291–316.Google Scholar
  51. Spence, D. H. N., 1967. Factors controlling the distribution of freshwater macrophytes with particular reference to the lochs of Scotland. J. Ecol. 55: 147–170.Google Scholar
  52. Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. Adv. Ecol. Res. 12: 37–125.Google Scholar
  53. Spiewakowski, E. R., J. Piasecki & M. Wielicka, 1985. Morphological and anatomical changes in the petioles of Nymphaea alba L. and Nuphar luteum (L.) Sm. caused by oscillations of the water level in lakes. Acta Soc. Bot. Pol. 54: 351–359.Google Scholar
  54. Spiewakowski, E. R., M. Wielicka & J. Piasecki, 1987. Anatomical-morphological changes in Glyceria aquatica (L.) Wahlb. and Phalaris arundinacea L. growing in the zone inudated by the Kwiecko lake. Acta Soc. Bot. Pol. 56: 147–154.Google Scholar
  55. Ter Break, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11.Google Scholar
  56. Wassén, G., 1966. Gardiken. Vegetation und Flora eines lappländischen Seeufers. K.Sv.Vetenskapsakad. Avh. Naturskyddsärend 22: 1–142.Google Scholar
  57. Wetzel, R. G., E. S. Brammer & C. Forsberg, 1984. Photosynthesis of submersed macrophytes in acidified lakes. I. Carbon fluxes and recycling of CO2 in Juncus bulbosus L. Aquat. Bot. 19: 329–342.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Bjørn Rørslett
    • 1
  1. 1.Norwegian Institute for Water ResearchOslo 3Norway

Personalised recommendations