, Volume 131, Issue 1, pp 3–21 | Cite as

Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus and Elodea canadensis

  • Stanley A. Nichols
  • Byron H. Shaw


The life histories of Myriophyllum spicatum L., Elodea canadensis Michx., and Potamogeton crispus L., serious aquatic nuisances in many regions of the world, are reviewed to provide insights into the life style of successful aquatic nuisance plants. Specifically, their distribution and spread in North America; their life cycle, productive and reproductive potential; and their ecosystem relationships are reviewed. Hopefully this review will improve a manager's ability to deal with aquatic nuisance problems. It also provides suggestions for basic research needed to develop more effective management practices.

It was found that all three species possess a number of adaptations, including an ability to rapidly propagate vegetatively, an opportunistic nature for obtaining nutrients, a life cycle that favors cool weather, and a number of mechanisms which enhance photosynthetic efficiency, which allow them to proliferate.

These three species do provide benefits to the ecosystem through their roles in materials cycling and energy flow. Therefore, management of these species should take an integrated approach which recognizes these benefits.

The life history information available about the three species varies tremendously; however, a better understanding of resource gain and allocation is needed to manage all three species. Specifically, more research is needed to provide a better understanding of: 1) the role bicarbonate plays in photosynthesis, 2) the role roots play in supplying CO2 to the plabts, 3) resource accumulation and allocation under different temperature and light regimes, 4) resource allocation on a seasonal basis, and 5) nutrient cycling under different management regimes.


Myriophyllum spicatum Potamogeton crispus Elodea canadensis distribution life cycle productivity ecosystem relationships 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M.S., J. Titus & M. D. McCracken, 1974. Depth distribution of photosynthetic activity in a Myriophyllum spicatum community in Lake Wingra. Limnol. Oceanogr. 19: 377–389.Google Scholar
  2. Adams, M. S., P. Guilizzoni & S. Adams, 1978. Relationship of dissolved inorganic carbon to macrophyte photosynthesis in some Italian lakes. Limnol. Oceanogr. 23: 912–919.Google Scholar
  3. Aiken, S. G., P. Newroth & I. Wile, 1979. The biology of Canadian weeds (34). Myriophyllum spicatum L. Can. J. Pl. Sci. 59: 201–215.Google Scholar
  4. Allen, E. D. & D. H. N. Spence, 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh water. New Phytol. 87: 269–284.Google Scholar
  5. Allenby, K. G., 1981. Some analyses of aquatic plants and their waters. Hydrobiologia 87: 177–190.Google Scholar
  6. Amundsen, C. C. & A. L. Brenkert, 1978. Characterization of the growth of Myriophyllum spicatum and its influence in the aquatic ecosystem of the Tennessee Valley. Univ. Tenn. Wat. Resour. Res. Cent. Res. Rep. 67, Knoxville, 242 pp.Google Scholar
  7. Andrews, J. H., 1980. Plant pathogens as agents for biological and integrated control of aquatic plants. Univ. Wisc. Wat. Res. Cent. tech. Completion Rep. 80–01, Madison, 36 pp.Google Scholar
  8. Andrews, J. H. & E. P. Hecht, 1981. Evidence for pathogenicity of Fusarium sporotrichioides to eurasian watermilfoil, Myriophyllum spicatum. Can. J. Bot. 59: 1069–1077.Google Scholar
  9. Andrews, J. H., E. P. Hecht & S. Bashirian, 1982. Association between the fungus Acremonium curvulum and eurasian watermilfoil, Myriophyllum spicatum. Can. J. Bot. 60: 1216–1221.Google Scholar
  10. Angerilli, N. & B. Beirne, 1980. Influences of aquatic plant on colonization of artificial ponds by mosquitoes and their insect predators. Can. Ent. 112: 793–796.Google Scholar
  11. Barko, J. W., 1983. The growth of Myriophyllum spicatum L. in relation to selected characteristics of sediment and solution. Aquat. Bot. 15: 91–103.Google Scholar
  12. Barko, J. W. & R. M. Smart, 1980. Mobilization of sediment phosphorus by submergent freshwater macrophytes. Freshwat. Biol. 10: 229–239.Google Scholar
  13. Barko, J. W. & R. M. Smart, 1981. Sediment-based nutrition of submersed macrophytes. Aquat. Bot. 10: 339–352.Google Scholar
  14. Bayley, S. E., 1970. Ecology and disease of Myriophyllum spicatum L. Ph.D. Thesis, John Hopkins Univ., Baltimore, 192 pp.Google Scholar
  15. Bayley, S., H. Rabin & C. Southwick, 1968. Recent decline in the distribution and abundance of Eurasian milfoil in Chesapeake Bay. Chesapeake Sci. 9: 173–181.Google Scholar
  16. Bayley, S., V. D. Stotts, P. F. Springer & J. Steenis, 1978. Changes in submerged aquatic macrophyte populations at the head of Chesapeake Bay 1958–1975. Estuaries 1: 73–84.Google Scholar
  17. Bean, G. A., M. Fusco & W. Klarman, 1973. Studies on the ‘Lake Venice disease’ of Eurasian milfoil in the Chesapeake Bay. Chesapeake Sci. 14: 279–280.Google Scholar
  18. Best, M. D. & K. E. Mantai, 1978. Growth of Myriophyllum spicatum: sediment or lake water as a source of nitrogen and phosphorus. Ecology 59: 1075–1080.Google Scholar
  19. Bilby, R., 1977. Effects of a spate on the macrophyte vegetation of a stream pool. Hydrobiologia 56: 109–112.Google Scholar
  20. Black, M. A., S. C. Maberly & D. H. N. Spence, 1981. Resistances to carbon fixation in four submerged freshwater macrophytes. New Phytol. 89: 557–568.Google Scholar
  21. Bole, J. B. & J. R. Allan, 1978. Uptake of phosphorus from sediment by aquatic plants, Myriophyllum spicatum and Hydrilla verticillata. Wat. Res. 12: 353–358.Google Scholar
  22. Borawa, J., J. H. Kerby, M. T. Huisch & A. W. Mullis, 1979. Currituck Sound fish populations before and after infestation by eurasian watermilfoil. In Proc. ann. Conf. S.E. Ass. Fish Wildl. Ag.: 520–528.Google Scholar
  23. Bristow, J. W. & M. Whitcombe, 1971. The role of roots in the nutrition of aquatic vascular plants. Am. J. Bot. 58: 8–13.Google Scholar
  24. British Columbia Ministry of Environment, 1981. A summary of biological research on eurasian milfoil in British Columbia, 11 Inf. Bull., aquat. Pl. Mgmt Prog. Victoria, 18 pp.Google Scholar
  25. Buscemi, P. A., 1958. Littoral oxygen depletion produced by a cover of Elodea canadensis. Oikos 9: 239–245.Google Scholar
  26. Carignan, R. & J. Kalff, 1980. Phosphorus sources for aquatic weeds, water or sediments. Science 207: 987–989.Google Scholar
  27. Carpenter, S. R., 1980. The decline of Myriophyllum spicatum in a eutrophic Wisconsin U.S.A. lake. Can. J. Bot. 58: 527–535.Google Scholar
  28. Carpenter, S. R. & M. S. Adams, 1977. The macrophyte tissue nutrient pool of a hardwater eutrophic lake: implications for macrophyte harvesting. Aquat. Bot. 3: 239–255Google Scholar
  29. Carpenter, S. R. & M. S. Adams, 1978. Macrophyte control by harvesting and herbicides: implications for phosphorus cycling in Lake Wingra, Wisconsin. J. aquat. Pl. Mgmt 16: 20–23.Google Scholar
  30. Carpenter, S. R. & A. Gasith, 1978. Mechanical cutting of submersed macrophytes: immediate effects on littoral water chemistry and metabolism. Wat. Res. 12: 55–57.Google Scholar
  31. Casterlin, M. E. & W. W. Reynolds, 1978. Habitat selection by juvenile bluegill sunfish, Lepomis macrochirus. Hydrobiologia 59: 75–80.Google Scholar
  32. Cattaneo, A. & J. Kalf, 1979. Primary production of algae growing on natural and artificial aquatic plants: a study of interactions between epiphytes and their substrate. Limnol. Oceanogr. 24: 1031–1037.Google Scholar
  33. Chapman, V. J., J. M. A. Brown, C. F. Hill & J. L. Carr, 1974. Biology of excessive weed growth in the hydro-electric lakes of the Waitako River, New Zealand. Hydrobiologia 44: 349–367.Google Scholar
  34. Crowder, L. B. & W. E. Cooper, 1979. The effects of macrophyte removal on the feeding efficiency and growth of sunfishes: evidence from pond studies. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Inst. envir. Stud., Univ. Wisc., Madison: 251–268.Google Scholar
  35. Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.Google Scholar
  36. Crum, G. H. & R. W. Bachmann, 1973. Submersed aquatic macrophytes of the Iowa great lakes region. Iowa St. J. Res. 48: 147–173.Google Scholar
  37. Curtis, J. T., 1959. The vegetation of Wisconsin. University of Wisconsin Press, Madison, 657 pp.Google Scholar
  38. Dale, H. M., 1981. Hydrostatic pressure as a controlling factor in the depth distribution of Eurasian watermilfoil, Myriophyllum spicatum L. Hydrobiologia 79: 239–244.Google Scholar
  39. Danell, K., 1977. Short-term plant succession following the colonization of a northern Swedish lake by the muskrat Ondatra zibethica. J. appl. Ecol. 14: 933–948.Google Scholar
  40. DeGroote, D. & R. A. Kennedy, 1977. Photosynthesis in Elodea canadensis 4 carbon acid synthesis. Pl. Physiol. 59: 1133–1135.Google Scholar
  41. DeMarte, J. A. & R. T. Hartman, 1974. Studies on absorption of 32P, 50Fe, and 45Ca by watermilfoil (Myriophyllum exalbescens). Ecology 55: 188–194.Google Scholar
  42. Elser, H. J., 1969. Observations on the deline of watermilfoil and other aquatic plants, Maryland 1962–1967. Hyacinth Cont. J. 8: 52–60.Google Scholar
  43. Eminson, D. & B. Moss, 1980. The composition and ecology of periphyton communities in freshwater, 1. The influence of host type and external environment on community composition. Br. phycol. J. 15: 429–446.Google Scholar
  44. Fassett, N., 1969. A manual of aquatic plants. University of Wisconsin Press, Madison, 405 pp.Google Scholar
  45. Fitzgerald, G., 1969. Some factors in the competition or antogonism among bacteria, algae and aquatic weeds. J. Phycol. 5: 351–359.Google Scholar
  46. Forest, H. S., 1977. Study of submerged aquatic vascular plants in northern glacial lakes, New York state, U.S.A. Folia geobot. phytotax. 12: 329–341.Google Scholar
  47. Forsberg, C., 1964. The vegetation changes in Lake Takern. Svensk Bot. Tidskr. 58: 44–54.Google Scholar
  48. Gerloff, G. C., 1975. Nutritional ecology of nuisance aquatic plants. U.S. E.P.A. Res. Rep. EPA-660/3–75–027, Corvallis, 78 pp.Google Scholar
  49. Gerloff, G. C. & P. H. Krombholz, 1966. Tissue analysis as a measure of nutrient availability for growth of angiosperm aquatic plants. Limnol. Oceanogr. 11: 529–537.Google Scholar
  50. Grace, J. B. & R. G. Wetzel, 1978. The production biology of eurasian watermilfoil: a review. J. aquat. Pl. Mgmt 16: 1–10.Google Scholar
  51. Grainger, J., 1947. Nutrition and flowering of water plants. J. Ecol. 35: 49–64.Google Scholar
  52. Haag, R. W., 1979. The ecological significance of dormancy in some rooted aquatic plants. J. Ecol. 67: 727–738.Google Scholar
  53. Harman, W. N., 1974. Phenology and physiognomy of the hydrophytic community in Otsego Lake, N.Y. Rhodora 76: 497–508.Google Scholar
  54. Hasler, A. & E. Jones, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 359–364.Google Scholar
  55. Hayslip, H. F. & F. W. Zettler, 1973. Past and current research on disease of Eurasian watermilfoil (Myriophyllum spicatum L.) Hyacinth Cont. J. 11: 38–40.Google Scholar
  56. Hellquist, C. B., 1972. Range extension of vascular plants in New England. Rhodora 74: 131–141.Google Scholar
  57. Hellquist, C. B., 1980. Correlation of alkalinity and the distribution of potamogeton in New England. Rhodora 82: 331–344.Google Scholar
  58. Hough, R. A., 1979. Photosynthesis, respiration and organic carbon release in Elodea canadensis. Aquat. Bot. 7: 1–12.Google Scholar
  59. Hough, R. A. & R. G. Wetzel, 1979. Photosynthetic pathways of some aquatic plants. Aquat. Bot. 3: 297–313Google Scholar
  60. Hutchinson, G. E., 1975. A treatise on limnology, 3. John Wiley & Sons, N.Y., 660 pp.Google Scholar
  61. Jeschke, L. & K. Muther, 1978. Plant sociology of the Rheinsberger Lakes. Limnologica 11: 307–353.Google Scholar
  62. Jewell, W. J., 1970. Aquatic weed decay: dissolved oxygen utilization and nitrogen and phosphorus regeneration. J. Wat. Pollut. Cont. Fed. 43: 1457–1467.Google Scholar
  63. Jones, R. C., A. Gurevitch & M. S. Adams, 1979. Significance of the epiphyte component of the littoral to biomass and phosphorus removal by harvesting. In J. E. Breck, R. T. Prentki & O.L. Loucks (eds), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Inst. envir. Stud. Univ. Wisc., Madison: 51–62.Google Scholar
  64. Joyner, B. G. & T. E. Freeman, 1973. Pathogenicity of Rhizoctonia solani to aquatic plants. Phytopathology 63: 681–685.Google Scholar
  65. Jupp, B. D. & D. H. W. Spence, 1977. Limitations on macrophytes in a eutrophic lake, Lock Leven, 1. Effects of Phytoplankton. J. Ecol. 65: 175–186.Google Scholar
  66. Kadono, Y., 1980. Photosynthetic carbon sources in some Potamogeton species. Bot. Mag., Tokyo 93: 185–194.Google Scholar
  67. Kangasniemi, B. J., 1983. Observations on herbivorous insects that feed on Myriophyllum spicatum in British Columbia. In U.S. E.P.A. (ed.), Lake restoration, protection and management. Proc. 2nd ann. Conf. N. am. Lake Mgmt Soc. EPA 440/5–83–001 Wash., D.C.: 214–218.Google Scholar
  68. Keast, A., 1984. The introduced aquatic macrophyte, Myriophyllum spicatum, as habitat for fish and their invertebrate prey. Can. J. Zool. G2: 1289–1303.Google Scholar
  69. Kimbel, J. C., 1982. Factors influencing potential intralake colonization by Myriophyllum spicatum L. Aquat. Bot. 14: 295–307.Google Scholar
  70. Krecker, F. H., 1939. A comparative study of the animal populations of certain submerged aquatic plants. Ecology 20: 553–562.Google Scholar
  71. Krull, J. N., 1970. Aquatic plant-macroinvertebrate associations and waterfowl. J. Wildl. Mgmt 34: 707–718.Google Scholar
  72. Kuflikowski, T., 1974. The phytophilous fauna of the dam reservoir at Goczalkowice, Poland. Acta hydrobiol. 16: 189–207.Google Scholar
  73. Kunii, H., 1982. Life cycle and growth of Potamogeton crispus L. in shallow pond Ojage-ike. Bot. Mag., Tokyo 95: 109–124.Google Scholar
  74. Landers, D. H., 1979. Nutrient release from senescing milfoil and phytoplankton response. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management and ecosystem consequences of lake harvesting. Inst. envir. Stud. Univ. Wisc., Madison: 127–134.Google Scholar
  75. Lind, C. T. & G. Cottam, 1969. The submerged aquatics of University Bay: A study in eutrophication. Am. Midl. Nat. 81: 353–369.Google Scholar
  76. Lloyd, N. D. H., D. T. Canvin & J. M. Bristow, 1977. Photosynthesis and photorespiration in submerged aquatic vascular plants. Can. J. Bot. 55: 3001–3005.Google Scholar
  77. Loczy, S., R. Carignan & D. Planas, 1983. The role of roots in carbon uptake by the submersed macrophytes Myriophyllum spicatum, Vallisneria americana, and Heteranthera dubia. Hydrobiologia 98: 3–7.Google Scholar
  78. Lundegardh-Ericson, C., 1972. Changes during four years in the aquatic macrovegetation in a flad in northern Stockholm Archipelago. Svensk Bot. Tidskr. 66: 207–225.Google Scholar
  79. Lunney, C. A., G. J. Davis & M. M. Jones, 1975. Unusual structures associated with peripheral reticulum in chloroplasts of Myriophyllum spicatum L. J. Ultrastruct. Res. 50: 293–296.Google Scholar
  80. Maberly, S. C. & D. N. H. Spence, 1983. Photosynthetic inorganic carbon use by freshwater plants. J. Ecol. 71: 705–724.Google Scholar
  81. Madsen, J. D., 1982. The aquatic macrophyte communities of two trout streams in Wisconsin. M.Sci. Thesis, Univ. Wisc., Madison, 108 pp.Google Scholar
  82. McGaha, Y. J., 1952. The limnological relations of insects to certain aquatic flowering plants. Trans. am. microscop. Soc. 71: 355–381.Google Scholar
  83. Menzie, C. A., 1980. The chironomid insecta diptera and other fauna of the Myriophyllum spicatum plant bed in the lower Hudson River, New York, U.S.A. Estuaries 3: 38–54.Google Scholar
  84. Misra, R. D., 1938. The distribution of aquatic plants in the English lakes. J. Ecol. 26: 411–452.Google Scholar
  85. Moyle, J. B., 1945. Some chemical factors influencing the distribution of aquatic plants in Minnesota. Am. Midl. Nat. 34: 402–421.Google Scholar
  86. Mulligan, H. F., A. Baranowski & R. Johnson, 1976. Nitrogen and phosphorus fertilization of aquatic vascular plants and algae in replicated ponds, 1 Initial response to fertilization. Hydrobiologia 48: 109–116.Google Scholar
  87. Nichols, D. S. & D. R. Keeney, 1973. Nitrogen and phosphorus release from decaying water milfoil. Hydrobiologia 45: 509–525.Google Scholar
  88. Nichols, D. S. & D. R. Keeney, 1976a. Nitrogen nutrition of Myriophyllum spicatum: Variation of plant tissue nitrogen concentration with season and site in Lake Wingra. Freshwat. Biol. 6: 137–144.Google Scholar
  89. Nichols, D. S. & D. R. Keeney, 1976b. Nitrogen nutrition of Myriophyllum spicatum: Uptake and translocation of 15N by shoots and roots. Freshwat. Biol. 6: 145–154.Google Scholar
  90. Nichols, S. A., 1971. The distribution and control of macrophyte biomass in Lake Wingra. Technical Report OWRR. B-019-Wis. Univ. Wisc. Wat. Resour. Cent, Madison, 132 pp.Google Scholar
  91. Nichols, S. A., 1973. The effects of harvesting aquatic macrophytes on algae. Trans. Wis. Acad. Sci. 61: 165–172.Google Scholar
  92. Nichols, S. A., 1982. Sampling characteristics of macrophyte biomass. Wat. Res. Bull. 18: 521–523.Google Scholar
  93. Nichols, S. A., 1984. Macrophyte community dynamics in a dredged Wisconsin Lake. Wat. Res. Bull. 20: 573–576.Google Scholar
  94. Nichols, S. A. & S. Mori, 1971. The littoral macrophyte vegetation of Lake Wingra. Trans. Wis. Acad. Sci. 59: 107–119.Google Scholar
  95. Nichols, S. A. & B. Shaw, 1983. Review of management tactics for integrated aquatic weed management of eurasian water-milfoil (Myriophyllum spicatum), curlyleaf pondweed (Potamogeton crispus) and elodea (Elodea canadensis). U.S. E.P.A. (ed.), Lake Restoration, protection and management. Proc. 2nd ann. Conf. N. am. Lake Mgmt, Soc. EPA 440/5–83–001, Wash., D.C.: 181–192.Google Scholar
  96. Oglesby, R. T., A. Vogel, J. H. Peverly & R. Johnson, 1976. Changes in submerged plants at the south end of Cayuga Lake following tropical storm Agnes. Hydrobiologia 48: 251–255.Google Scholar
  97. Olsen, S., 1950. Aquatic plants and hydrospheric factors. 1 Aquatic plants in SW Jutland, Denmark. Svensk Bot. Tidskr. 44: 1–32.Google Scholar
  98. Patten, B. C., 1956. Notes on the biology of Myriophyllum spicatum L. in a New Jersey lake. Bull. Torrey bot. Club 83: 5–18.Google Scholar
  99. Pearsall, W. H., 1920. The aquatic vegetation of English lakes. J. Ecol. 8: 163–199.Google Scholar
  100. Penfound, W. H., T. F. Hall & A. D. Hess, 1945. The spring phenology of plants in and around reservoirs in north Alabama with particular reference to malaria control. Ecology 26: 332–352.Google Scholar
  101. Peverly, J. H. & J. Brittain, 1978. The effect of milfoil (Myriophyllum spicatum L.) on phosphorus movement between sediment and water. J. Gt Lakes Res. 4: 62–68.Google Scholar
  102. Peverly, J. H. & R. L. Johnson, 1979. Nutrient chemistry in herbicide treated ponds of differing fertility. J. envir. Qual. 8: 294–300.Google Scholar
  103. Phillips, C. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.Google Scholar
  104. Reed, C. F., 1977. History and distribution of Eurasian watermilfoil in United States and Canada. Phytologia 36: 416–436.Google Scholar
  105. Rogers, K. H. & C. M. Breen, 1980. Growth and reproduction of Potamogeton crispus in a South African Lake. J. Ecol. 68: 561–571.Google Scholar
  106. St. John, H., 1965. Monograph of the genus Elodea (Hydrocharitaceae) 4. The species of eastern and central North America & summary. Rhodora 67: 1–35, 155–180.Google Scholar
  107. Saitoh, M., K. Narita & S. Isikawa, 1970. Photosynthetic nature of some aquatic plants in relation to temperature. Bot. Mag., Tokyo 83: 10–12.Google Scholar
  108. Salvucci, M. E. & G. Bowes, 1983. Two photosynthetic mechanisms mediating the low photorespiratory state in submersed aquatic angiosperms. Pl. Physiol. 73: 488–496.Google Scholar
  109. Sastroutomo, S. S., 1980. Environmental control of turion formation in curly pondweed (Potamogeton crispus). Physiol. Pl. 49: 261–264.Google Scholar
  110. Sastroutomo, S. S., 1981. Turion formation, dormancy, and germination in curly pondweed, Potamogeton crispus L. Aquat. Bot. 10: 161–173.Google Scholar
  111. Sastroutomo, S. S., I. Ikusima, M. Numata & S. Iizumi, 1979. The importance of turions in the propagation of pondweed (Potamogeton crispus L.). Ecol. Rev. 19: 75–88.Google Scholar
  112. Scales, P. & A. Bryan, 1979. Studies on aquatic macrophytes part 27. Transport of Myriophyllum spicatum fragments by boaters and assessment of the 1978 boat quarantine program. Br. Columbia Minist. Envir., Wat. Invest. Branch, Victoria, 36 pp.Google Scholar
  113. Schmid, W. P., 1965, Distribution of aquatic vegetation as measured by line intercept with SCUBA. Ecology 46: 816–823.Google Scholar
  114. Schmitt, M. R., 1977. The dependence of net photosynthesis on internal phosphorus levels in Myriophyllum spicatum L. M.Sci. Thesis, Univ. Wisc., Madison, 57 pp.Google Scholar
  115. Schmitt, M. R. & M. S. Adams, 1981. Dependence of rates of apparent photosynthesis on tissue phosphorus concentrations in Myriophyllum spicatum L. Aquat. Bot. 11: 379–387.Google Scholar
  116. Schults, D. W. & K. W. Maleug, 1971. Uptake of radiophosphorus by rooted aquatic plants. In Proc. 3rd Nat. Symp. Radioecol. Oak Ridge, Tenn.: 417–424.Google Scholar
  117. Sculthorpe, C. D., 1967. The biology of aquatic vascular plants. Edward Arnold Ltd., Lond., 610 pp.Google Scholar
  118. Seddon, B., 1972. Aquatic macrophytes as limnological indicators. Freshwat. Biol. 2: 107–130.Google Scholar
  119. Sheldon, R. B. & C. W. Boylen, 1977. Maximum depth inhabited by aquatic vascular plants. Am. Midl. Nat. 97: 248–254.Google Scholar
  120. Smith, F. A. & N. A. Walker, 1980. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 and to carbon isotopic discrimination. New Phytol. 86: 245–259.Google Scholar
  121. Sondergaard, M., 1979. Light and dark respiration and the effect of the lacunal system on refixation of carbon dioxide in submerged aquatic plants. Aquat. Bot. 6: 269–284.Google Scholar
  122. Sondergaard, M. & K. Sand-Jensen, 1979. The delay in carbon-14 fixation rates by 3 submerged macrophytes, a source of error in the carbon-14 technique. Aquat. Bot. 6: 111–120.Google Scholar
  123. Soszka, G. J., 1975a. Ecological relations between invertebrates and macrophytes in the lake littoral. Ekol. pol. 23: 393–415.Google Scholar
  124. Soszka, G. J., 1975b. The invertebrates on submerged macrophytes in three Masurian lakes. Ekol. pol. 23: 371–391.Google Scholar
  125. Spence, D. H. N., 1964. The macrophytic vegetation of freshwater lochs, swamps and associated fens. In J. H. Burnett (ed.), The Vegetation of Scotland, Oliver & Boyd, Edinburgh: 406–425.Google Scholar
  126. Spence, D. H. N., 1967. Factors controlling the distribution of freshwater macrophytes with particular reference to the lochs of Scotland. J. Ecol. 55: 147–170.Google Scholar
  127. Springer, P. F., G. F. Beavens & V. D. Stotts, 1961. Eurasian watermilfoil — a rapidly spreading pest plant in eastern waters. Presented at N.E. Wildl. Conf., Halifax, Nova Scotia, June 11–14, 1961.Google Scholar
  128. Stanley, R. A., 1970. Studies on nutrition, photosynthesis and respiration in Myriophyllum spicatum L. Ph.D. Thesis, Duke Univ., Durham, N.C., 140 pp.Google Scholar
  129. Stanley, R. A., 1976. Response of Eurasian watermilfoil to subfreezing temperature. J. aquat. Pl. Mgmt 14: 36–39.Google Scholar
  130. Stanley, R. A. & A. W. Naylor, 1972. Photosynthesis in Eurasian watermilfoil. Pl. Physiol. 50: 149–151.Google Scholar
  131. Stanley, R. A. & A. W. Naylor, 1973. Glycolate metabolism in Eurasian watermilfoil (Myriophyllum spicatum). Physiol. Pl. 29: 60–63.Google Scholar
  132. Steenis, J. H. & V. D. Stotts, 1961. Progress report on control of Eurasian watermilfoil in Chesapeake Bay. Proc. N.E. Weed Cont. Conf. 15: 566–570.Google Scholar
  133. Stuckey, R. L., 1979. Distribution history of Potamogeton crispus (curly pondweed) in North America. Bartonia 46: 22–42.Google Scholar
  134. Stuckey, R. L., J. R. Wehrmeister & R. J. Bartolotta, 1978. Submersed aquatic vascular plants in ice-covered ponds of central Ohio. Rhodora 80: 575–580.Google Scholar
  135. Tamisier, A., 1971. The diet of teal ducks Anas crecca in the Camargue Region, Alauda 39: 261–311.Google Scholar
  136. Titus, J. E., 1977. The comparative physiological ecology of three submerged macrophytes. Ph.D. Thesis, Univ. Wisc., Madison, 195 pp.Google Scholar
  137. Titus, J. E. & M. S. Adams, 1979. Coexistence and the comparative light relations of the submersed macrophytes Myriophyllum spicatum, and Vallisneria americana. Oecologia 40: 273–286.Google Scholar
  138. Trudeau, P. N., 1982. Nuisance aquatic plants and aquatic plant management programs in the United States, 3. Northeastern and north central region. MITRE Corporation, McClean, Virg., 157 pp.Google Scholar
  139. Van, T. K., W. R. Haller & G. Bowes, 1976. Photosynthesis of three submerged aquatic macrophytes. Pl. Physiol. 57: 761–768.Google Scholar
  140. Waisel, Y. & Z. Shapira, 1971. Functions performed by roots of some submerged hydrophytes. Isr. J. Bot. 20: 69–77.Google Scholar
  141. Wehrmeister, J. R., 1978. An ecological life history of the pond-weed Potamogeton crispus L. in North America. Ohio St. Univ., Cent. Lake Erie Area Res. Tech. Rep. 99: Columbus, 157 pp.Google Scholar
  142. Welsh, R. P. H. & P. Denny, 1979. The translocation of phosphorus-32 in 2 submerged aquatic angiosperm species. New Phytol. 82: 645–656.Google Scholar
  143. Wetzel, R. G., 1975. Limnology. W. B. Saunders & Co., Philad., 743 pp.Google Scholar
  144. Wile, I., G. Hitchin & G. Beggs, 1979. Impact of mechanical harvesting on Chemung Lake. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Inst. envir. Stud., Univ. Wisc., Madison: 145–159.Google Scholar
  145. Wilson, L. R., 1937. A quantitative and ecological study of the larger plants of Sweeney Lake, Oneida County, Wisconsin, Bull. Torrey Bot. Club 64: 199–208.Google Scholar
  146. Wilson, L. R., 1941. The larger vegetation of Trout Lake, Vilas County, Wis. Trans. Wis. Acad. Sci. 33: 135–146.Google Scholar
  147. Yeo, R. R., 1966. Yield of propagules of certain aquatic plants. Weeds 14: 110–113.Google Scholar
  148. Zettler, F. W. & T. E. Freeman, 1972. Plant pathogens as biocontrols of aquatic weeds. Ann. Rev. Phytopath. 10: 455–470.Google Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • Stanley A. Nichols
    • 1
  • Byron H. Shaw
    • 2
  1. 1.Wisconsin Geological and Natural History SurveyMadisonU.S.A.
  2. 2.University of Wisconsin - Stevens PointStevens PointU.S.A.

Personalised recommendations