Skip to main content
Log in

Nano- and picoplankton growth and production in the Bay of Villefranche sur Mer (N.W. Mediterranean)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Plankton production in the Bay of Villefranche was relatively constant during March and April 1986 but the particle size at which the production occurred was more variable. At the beginning of the study, production was dominated by the larger (ca. 6 μm) flagellates but towards the end it was more or less equally divided between the nano- and picoplankton. There were considerable differences in the estimates of population growth rates, depending on the methods used, but on average the population doubling times were close to 12 hours for autotrophs and 24 hours for heterotrophs. As autotrophs do not grow during the night, each population was therefore doubling once per day. It seemed that each of the nanoor picoplankton populations could adversely affect the growth of the others. This could be either by simple predation or by some form of inhibition. Although nutrient levels in the bay were uniformly low, the addition of nutrients did not always stimulate algal growth. The plankton populations seemed to be both in a state of equilibrium and intense ecological competition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, G. C., T. R. Parsons & K. Stephens, 1969. Nitrate distribution in the northeast Pacific Ocean. Deep-Sea Res. 16:329–333.

    Google Scholar 

  • Bjørnsen, P. K., 1986. Automatic determination of bacterioplankton biomass by image analysis. Appl. envir. Microbiol. 51: 1199–1204.

    Google Scholar 

  • Blackburn, M., R. M. Laurs, R. W. Owen & B. Zeitschel, 1970. Seasonal and areal changes in standing stocks of phytoplankton, zooplankton and micronekton in the eastern tropical Pacific. Mar. Biol. 7: 14–31.

    Google Scholar 

  • Davis, P. G. & J. McN. Sieburth, 1982. Differentiation of phototrophic and heterotrophic nanoplankton populations in marine waters by epifluorescence microscopy. Ann. Inst. Océanogr. (Paris) 58: 249–260.

    Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results. Mar. Biol. 66: 109–120.

    Google Scholar 

  • Goldman, J. C. & M. R. Dennett, 1985. Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing. J. Exp. mar. Biol. Ecol. 86: 47–58.

    Google Scholar 

  • Harris, G. P., F. B. Griffiths & D. P. Thomas, 1989. Light and dark uptake and loss of14C: methodological problems with productivity measurements in oceanic waters. Hydrobiologia 173: 95–105.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of nuclepore filters for counting bacteria by epifluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Jørgensen, E. G., 1962. Antibiotic substances from cells and culture solutions of unicellular algae with special reference to some chlorophyll derivatives. Physiol. Plant. 15: 530–545.

    Google Scholar 

  • Karl, D. M. & O. Holm-Hansen, 1978. ATP, ADP and AMP determinations in water samples and algal cultures. In Handbook of phycological, physiological and biochemical methods: J. A. Hellebust & J. S. Craigie, Cambridge (eds): 197–206.

  • Koroleff, F., 1969. Direct determination of ammonia in natural waters as indophenol blue. Int. Cons. Explor. Mer. C. M. 1969/C: 9.

  • Lee,S. & J. D. Fuhrman, 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Envir. Microbiol. 53: 1298–13030.

    Google Scholar 

  • Li, W. K. W. & A. M. Wood, 1988. Vertical distribution of North Atlantic ultraplankton: analysis by flow cytometry and epifluorescence microscopy. Deep-Sea Res. 35: 1615–1638.

    Google Scholar 

  • Neveux, J. & M. Panouse, 1987. Spectrofluorometric determination of chlorophylls and phaeophytins. Archiv. Hydrobiol. 109: 567–581.

    Google Scholar 

  • Porter,K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Prakash, A., R. W. Sheldon & W. H. Sutcliffe, Jr., 1991. Geographic variation of oceanic14C dark uptake. Limnol. Oceanogr. 36: 30–39.

    Google Scholar 

  • Rassoulzadegan, F., 1978. Dimensions et taux d'ingestion des particules consommées par un tintinideFavella Ehrenbergii (Clap & Lachm) Jörg, cilié pélagique marin. Ann. Inst. Océanogr. (Paris) 54: 17–24.

    Google Scholar 

  • Rassoulzadegan, F., 1982. Dependence of grazing rate, gross growth efficiency and food size range in a pelagic oligotrichous ciliateLohmanniella spiralis Leeg, fed on naturally occurring particulate matter. Ann. Inst. Océanogr. (Paris) 58: 177–184.

    Google Scholar 

  • Rassoulzadegan, F. & M. Etienne, 1981. Grazing rate of the tintinidStenosomella ventricosa (Clap & Lachm) Jörg, on the spectrum of naturally occurring particulate matter from a Mediterranean neritic area. Limnol. Oceanogr. 26: 258–270

    Google Scholar 

  • Rassoulzadegan, F., M. Laval-Peuto & R. W. Sheldon, 1988. Partitioning of the food ration of marine ciliates between pico- and nanoplankton. Hydrobiologia 159: 75–88.

    Google Scholar 

  • Rassoulzadegan, F. & R. W. Sheldon, 1986. Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnol. Oceanogr. 31: 1010–1021.

    Google Scholar 

  • Rivier, A., D. C. Brownlee, R. W. Sheldon & F. Rassoulzadegan, 1985. Growth of microzooplankton: a comparative study of bactivorous zooflagellates and ciliates. Mar. Microb. Food Webs 1: 51–60.

    Google Scholar 

  • Romano, J. C. & R. Daumas, 1981. Adenosine nucleotide ‘energy charge’ ratios as an ecophysiological index for microplankton communities. Mar. Biol. 62: 281–296.

    Google Scholar 

  • Ryther, J. H., 1963. Geographic variations in productivity. In ‘The Sea’ vol. 2, pp. 347–380. Ed. M.N. Hill. Interscience.

  • Sheldon, R. W., A. Prakash & W. H. Sutcliffe, Jr., 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340.

    Google Scholar 

  • Sheldon, R. W. & F. Rassoulzadegan, 1987. A method for measuring plankton production by particle counting. Mar. Microb. Food Webs 2: 29–44.

    Google Scholar 

  • Sherr, E. B., B. F. Sherr & G. A. Paffenhöffer, 1986. Phagotrophic protozoa as food for metazoans: a missing link in marine pelagic food webs. Mar. Microb. Food Webs 1: 61–80.

    Google Scholar 

  • Stockner, J. G. & N. J. Antia, 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. aquat. Sci. 43: 2472–2503.

    Google Scholar 

  • Tréguer, P. & P. Le Corre, 1975. Manuel d'analyses des sets nutritifs dans l'eau de mer (utilisation de l'Autoanalyser II Technicon). Laboratoire d'océanographie chimique. Université de Bretagne. Brest. 110 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheldon, R.W., Rassoulzadegan, F., Azam, F. et al. Nano- and picoplankton growth and production in the Bay of Villefranche sur Mer (N.W. Mediterranean). Hydrobiologia 241, 91–106 (1992). https://doi.org/10.1007/BF00008262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008262

Key words

Navigation