Skip to main content
Log in

Seasonal changes of subantarctic benthic bacterial communities

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

From December 1982 to February 1985 systematic observations of heterotrophic bacterial populations were recorded for a nearshore marine sediment of Kerguelen Archipelago. A weekly survey included physicochemical (temperature, mineral and organic C and N) measurements. Total (A.O.D C.) and saprophytic (M.P.N. on Zobell medium) counts were used for quantitative bacterial investigations. Heterotrophic microbial activities were estimated by14C glucose and14C glutamic acid uptake measurements. The bacterial community structure was investigated by carrying out 57 morphological and biochemical tests on 1742 isolated strains. Quantitative data were treated by principal component analysis. Qualitative data were analysed by a numerical taxonomy technique using similarity coefficients with WPGM algorithm. The % abundance of the various taxonomic groups varied greatly with season. Although non fermentative Gram-negative rods were generally dominant, the existence of a succession of populations during bacterial growth resulting from periodical organic enrichements is clearly demonstrated. The nutrient supply rather than the temperature seems to be the major factor determining microbial fluctuations in the studied subantarctic coastal marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammerman, J. W., J. A. Fuhrman, A. Hagstrom & F. Azam, 1984. Bacterioplankton growth in seawater. Growth kinetics and cellular characteristics in seawater cultures. Mar. Ecol. Prog. Ser. 18: 31–39.

    Google Scholar 

  • Amy, P. S. & R. Y. Morita, 1983. Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Appl. envir. Microbiol. 45: 1109–1115.

    Google Scholar 

  • Bird, D. F. & D. M. Karl, 1991. Spatial pattern of glutamate and thymidine assimilation in Brandsfield Strait, Antarctica during and following the austral spring bloom. Deep Sea Res. 38: 1057–1075.

    Google Scholar 

  • Bölter, M. & R. Dawson, 1982. Heterotrophic utilization of biochemical compounds in antarctic waters. Neth. J. Sea Res. 16: 315–332.

    Google Scholar 

  • Bouvy, M., 1989. Microheterotrophic activity in a subantarctic intertidal sediment relative to nutrient supply. Arch. Hydrobiol. 115: 245–255.

    Google Scholar 

  • Bouvy, M., M. Le Romancer & D. Delille, 1986. Significance of microheterotrophs in relation to the degradation process of subantarctic kelp beds (M. pyrifera). Polar Biol. 5: 249–253.

    Google Scholar 

  • Bouvy, M. & D. Delille, 1987. Numerical taxonomy of bacterial communities associated with a subantarctic mussel bed. Helgoländer wiss. Meeresunters. 41: 415–424.

    Google Scholar 

  • Bouvy, M. & D. Delille, 1988. Spatial and temporal variations of Antarctic and Subantarctic bacterioplankton. Neth. J. Sea Res. 22: 139–147.

    Google Scholar 

  • Cahet, G. & D. Delille, 1984. Disponibilité du carbone organique élaboré par voie photo- chemo- et hétérotrophe dans divers sédiments littoraux. In Bactériologie Marine. C.N.R.S. Ed., Paris: 205–211.

    Google Scholar 

  • Cammen, L. M. & J. A. Walker, 1986. The relationship between bacteria and microalgae in the sediment of a Bay of Fundy Mudflat. Estuar. coast. Shelf Sci. 22: 91–99.

    Google Scholar 

  • Caron, D. A., P. G. Davis & J. McN. Sieburth, 1989. Factors responsible for the differences in cultural estimates and direct microscopical counts of populations of bacterivorous nanoflagellates. Microb. Ecol. 18: 89–104.

    Google Scholar 

  • Dahle, A. B. & M. Laake, 1982. Diversity dynamics of marine bacteria studied by immunofluorescent staining on membrane filters. Appl. envir Microbiol. 43: 169–176.

    Google Scholar 

  • Delille, D., 1977. Cycles bactériens du soufre et de l'azote dans les dépots sédimentaires du Fjord Bossière. In Adaptation within Antarctic Ecosystems. G.A. Llano Ed: 159–180.

  • Delille, D., 1990. Seasonal changes of subantarctic heterotrophic bacterioplankton. Arch. Hydrobiol. 119: 267–277.

    Google Scholar 

  • Delille, D., F. Gadel & G. Cahet, 1979. La matière organique dans les dépots de l'archipel de Kerguelen. Distribution spatiale et saisonnière. Oceanol. acta 2: 181–194.

    Google Scholar 

  • Delille, D. & G. Cahet, 1985. Heterotrophic processes in a Kerguelen mussel-bed. In Siegfried, W. R., P. R. Condy & R. M. Laws (eds), Antarctic Nutrient Cycles and Food Webs. Springer-Verlag Berlin: 128–135.

    Google Scholar 

  • Delille, D., M. Bouvy & G. Cahet, 1988. Short term variations of bacterioplankton in Antarctic zone: Terre Adélie area. Microb. Ecol. 15: 293–309.

    Google Scholar 

  • Delille, D. & M. Bouvy, 1989. Bacterial responses to natural organic inputs in a marine subantarctic area. Hydrobiologia 182: 225–238.

    Google Scholar 

  • Delille, D. & E. Perret, 1989. Influence of temperature on the growth potential of southern polar marine area. Microb. Ecol. 18: 117–123.

    Google Scholar 

  • Delille, D. & E. Perret, 1991. The influence of giant kelpMacrocystis pyrifera on the growth of subantarctic marine bacteria. J. exp. Mar. Biol. Ecol. 153: 227–239.

    Google Scholar 

  • De Flaun, M. F. & L. M. Mayer, 1983. Relationships between bacteria and grain surfaces in intertidal sediments. Limnol. Oceanogr. 28: 873–881.

    Google Scholar 

  • Fallon, R. D., S. Y. Newell & C. J. Hopkinson, 1983. Bacterial production in marine sediments: will cell specific measures agree with whole system metabolism? Mar. Ecol. Prog. Ser. 11: 119–127.

    Google Scholar 

  • Fisher, R. A. & F. Yates, 1963. Statistical tables for biological, agricultural and medical research. 6th edn. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Griffiths, R. P., S. S. Hayasaka, T. M. McNamara & R. Y. Morita, 1977. Comparison between two methods of assaying relative microbial activity in marine environments. Appl. envir. Microbiol. 34: 801–805.

    Google Scholar 

  • Griffiths, R. P., B. A. Caldwell, W. A. Broich & R. Y. Morita, 1983. Microbial processes relating to carbon cycling in South-eastern Bering Sea sediment. Mar. Ecol. Prog. Ser. 10: 265–275.

    Google Scholar 

  • Hanson, R. B., H. K. Lowery, 1985. Spatial distribution, structure, biomass and physiology of microbial assemblages across the Southern Ocean frontal zones during the late austral winter. Appl. envir. Microbiol. 49: 1029–1039.

    Google Scholar 

  • Hanson, R. B., H. K. Lowery, D. Shafer, R. Sorocco & D. H. Pope, 1983a. Microbes in in antarctic waters of the Drake Passage: vertical patterns of substrate uptake, productivity and biomass in January 1980. Polar Biol. 2: 179–188.

    Google Scholar 

  • Hanson, R. B., D. Schafer, T. Ryan, D. H. Pope & H. K. Lowery, 1983b. Bacterioplankton in antarctic ocean waters during late austral winter: abundances, F.D.C., and estimates of production. Appl. envir. Microbiol. 45: 1622–1632.

    Google Scholar 

  • Hauxhurst, J. D., T. Kaneko & R. M. Atlas, 1981. Characteristics of bacterial communities in the gulf of Alaska. Microbiol. Ecol. 7: 167–182.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Horowitz, A., M. I. Krichevsky & R. M. Atlas, 1983. Characteristics and diversity of subarctic marine oligotrophic, stenoheterotrophic, and euryheterotrophic bacterial populations. Can. J. Microbiol. 29: 527–535.

    Google Scholar 

  • Iniss, W. E. & C. I. Mayfield, 1979. Seasonal variation of psychrophilic bacteria in sediment from lake Ontario. Wat. Res. 13: 481–484.

    Google Scholar 

  • Karl, D. M., 1993. Microbial processes in the southern oceans. Antarctic Microbiology, Wiley-Liss, Inc: 1–63.

  • Karl, D. M., O. Holm-Hansen, G. T. Taylor, G. Tien & D. F. Bird, 1991. Microbial biomass and productivity in the western Bransfield Strait, Antarctica during the 1986–1987 austral summer. Deep-Sea res. 38: 1029–1055.

    Google Scholar 

  • Laake, M., A. B. Dahle & G. Hentzschel, 1983. Productivity and population diversity of marine organotrophic bacteria in enclosed planktonic ecosystems. Mar. Ecol. Prog. Ser. 14: 59–69.

    Google Scholar 

  • Meyer-Reil, L. A., 1987. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Appl. envir. Microbiol. 53: 1748–1755.

    Google Scholar 

  • Meyer-Reil, L. A., R. Dawson, G. Liebezeit & H. Tiedge, 1978. Fluctuations and interactions of bacterial activity in sandy beach sediments and overlaying waters. Mar. Biol. 48: 161–171.

    Google Scholar 

  • Meyer-Reil, L. A., M. Bolter, R. Dawson, G. Liebezeit, H. Szwarimki & K. Wolter, 1980. Interrelationships between microbiological and chemical parameters of sandy beach sediments, a summer aspect. Appl. envir. Microbiol. 39: 797–802.

    Google Scholar 

  • Moyer, C. L. & R. Y. Morita, 1989. Effects of growth rate and starvation-survival on the viability and stability of a psychrophilic marine bacterium. Appl. envir. Microbiol. 55: 1122–1127.

    Google Scholar 

  • Novitsky, J. A. & R. Y. Morita, 1976. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marinevibrio. Appl. envir. Microbiol. 32: 617–622.

    Google Scholar 

  • Oppenheimer, C. H. & C. E. ZoBell, 1952. The growth and viability of sixty three species of marine bacteria as influenced by hydrostatic pressure. J. mar. Res. 11: 10–18.

    Google Scholar 

  • Platt, T., S. Sathendranath, O. Ulloa, W. G. Harrison, N. Hoepffner & J. Goes, 1992. Nutrient control of phytoplankton photosynthesis in the western North Atlantic. Nature 356: 229–231.

    Google Scholar 

  • Rehnstam, A.-S., S. Bäckman, D. C. Smith, F. Azam & A. Hagström, 1993. Blooms of sequence-specific culturable bacteria in the sea. FEMS Microbiol. Ecol. 102: 161–166.

    Google Scholar 

  • Rheinheimer, G., K. Gocke & H. G. Hoppe, 1989. Vertical distribution of microbiological and hydrographic-chemical parameters in different areas of the Baltic Sea. Mar. Ecol. Prog. Ser. 52: 55–70.

    Google Scholar 

  • Rublee, P. A., 1982. Seasonal distribution of bacteria in salt marsh sediments in North Carolina. Estuar. coast. Shelf Sci. 15: 67–74.

    Google Scholar 

  • Schröder, H. G. J. & F. B. Van Es, 1980. Distribution of bacteria in intertidal sediments of the EMS Dollard estuary. Neth. J. Sea Res. 14: 268–287.

    Google Scholar 

  • Sneath, P. H. A. & R. R. Sokal, 1974. The principles and practice of numerical classification. W. H. Freeman, San Francisco.

    Google Scholar 

  • Sokal, R. R. & C. D. Michener, 1958. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 38: 1409–1438.

    Google Scholar 

  • Sugita, H., H. Tanaami & Y. Deguchi, 1982. Measurement of the bacterial counts in the sediments with gram staining method. Bull. Japan Soc. Sci. Fish. 48: 1469–1471.

    Google Scholar 

  • Sullivan C. W. & A. C. Palmisano, 1984. Sea ice microbial communities: distribution, abundance and diversity of ice bacteria in McMurdo Sound. Appl. envir. Microbiol. 47: 788–795.

    Google Scholar 

  • Trousselier, M. & P. Legendre, 1981. A functional evenness index for microbial ecology. Microb. Ecol. 7: 283–297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delille, D. Seasonal changes of subantarctic benthic bacterial communities. Hydrobiologia 310, 47–57 (1995). https://doi.org/10.1007/BF00008182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008182

Key words

Navigation