Skip to main content
Log in

Temperature and emergence effects on the net photosynthesis of two Zostera noltii Hornem. morphotypes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Apparent photosynthetic rates (APS) of two Zostera noltii Hornem. morphotypes were measured in air and in water at different temperatures with a closed infra-red gas analysis system (IRGA).

Hyperbolic functions accurately described the photosynthesis-CO2 relationships when the leaves were exposed to air. The photosynthetic behaviour in water, on the contrary, could not be described by Michaelis type kinetics, due to the existence of a rapid transition from the initial slope to the saturation phase. Both morphotypes (narrow-leaved, NLM and large-leaved, LLM) showed higher APS rates in water than in air, although the highest APS rates, in air as well in water, were recorded for the NLM.

Temperature had a significant influence on the photosynthetic parameters: APSmax (maximum photosynthetic rate) decreased (in air and in water) with increased temperature in both morphytypes; compensation points (CP) in air increased at high temperature, especially in the LLM. NLM specimens showed enhanced affinity (lower Km) with increasing temperature in air. On the contrary, Km values in water were not significantly affected by temperature.

The results suggest that NLM specimens are better adapted than the LLM to occur exposed to air. The distributional pattern of the two morphotypes in the Palmones Estuary is discussed on the basis of their photosynthetic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algarra, P. & F. X. Niell, 1987. Structural adaptations to light reception in two morphotypes of Corallina elongata Ellis et Soland. Mar. Ecol. 8: 253–261.

    Google Scholar 

  • Allen, H. L. & D. H. N. Spence, 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in freshwaters. New Phytol. 87: 269–283.

    Google Scholar 

  • Beer, S., A. Eshel & Y. Waishel, 1977. Carbon metabolism of seagrasses. I. The utilization of exogenous inorganic carbon species in photosynthesis. J. Exp. Bot. 28: 1180–1187.

    Google Scholar 

  • Beer, S. & Y. Waishel, 1979. Some photosynthetic carbon fixation properties of seagrasses. Aquat. Bot. 7: 129–138.

    Google Scholar 

  • Beer, S. & A. Eshel, 1983. Photosynthesis of Ulva sp. I. Effects of desiccation when exposed to air. J. Exp. Mar. Biol. Ecol. 70: 91–97.

    Google Scholar 

  • Benedict, C. R., W. W. Wong & H. H. Wong, 1980. Fractionation of the stable isotopes of inorganic carbon by seagrasses. Plant Physiol. 65: 512–517.

    Google Scholar 

  • Bidwell, R. G. S. & J. S. Craigie, 1983. A note on the greatly reduced ability of Fucus vesiculosus to absorb or evolve CO2 when not submerged. Can. J. Bot. 41: 179–182.

    Google Scholar 

  • Bidwell, R. G. S. & J. Mclachlan, 1985. Carbon nutrition of seaweeds: Photosynthesis, photorespiration and respiration. J. Exp. Mar. Biol. Ecol. 86: 15–46.

    Google Scholar 

  • Biebl, R., 1938. Trockenresistenz und osmotische Empfindlichkeit der Meeresalgen verschieden tiefer Standorte. Jahrb. wiss Bot. 86: 350–386.

    Google Scholar 

  • Biebl, R., 1962. Seaweeds. In Levin, R. A. (ed.), Physiology and biochemistry of algae. Academic Press, New York: 799–815.

    Google Scholar 

  • Briggs, G. E., 1959. Bicarbonate ions as a source of carbon dioxide for photosynthesis. J. Exp. Bot. 10: 90–92.

    Google Scholar 

  • Brinkhuis, B. H., N. R. Tempel & R. F. Jones, 1976. Photosynthesis and respiration of exposed salt-marsh fucoids. Mar. Biol. 34: 349–359.

    Google Scholar 

  • Browse, J. A., 1985. Measurement of photosynthesis by infrared gas analysis. In: Littler, M. M. & D. S. Littler (eds), Handbook of phycological methods. Ecological field methods: macroalgae. Cambridge University Press: 397–414.

  • Cooper, L. W. & C. P. McRoy, 1988. Stable carbon isotope ratio variations in marine macrophytes along intertidal gradients. Oecologia 77: 238–241.

    Google Scholar 

  • Cooper, L. W., 1989. Patterns of carbon isotopic variability in eelgrass Zostera marina L., from Izembek lagoon, Alaska. Aquat. Bot. 34: 329–339.

    Google Scholar 

  • den Hartog, C., 1970. The Sea-Grasses of the World. North Holland Publ. Amsterdam, 275 pp.

    Google Scholar 

  • Dennison, W. C. & R. S. Alberte, 1985. Role of Dailly light in the depth distribution of Zostera marina (eelgrass). Mar. Ecol. Progr. Ser. 25: 51–61.

    Google Scholar 

  • Drew, E. D., 1979. Physiological aspects of primary production in seagrasses. Aquat. Bot. 7: 139–150.

    Google Scholar 

  • Duncan, M. & R. E. Foreman, 1980. Phytochrome-mediated stipe elongation in the kelp Nerocystis (Phaeophyceae) J. Phycol. 16: 138–142.

    Google Scholar 

  • Edwards, G. & D. A. Walker, 1983. C3, C4 mechanisms, cellular and environmental regulation of photosynthesis. Blackwell Scientific Publishers, Oxford, 542 pp.

    Google Scholar 

  • Feldman, J., 1951. Ecology of marine algae. In Smith, R. A. (ed.), Manual of phycology. Chronica Botanica Watham, Masc: 313–334.

    Google Scholar 

  • Halliwell, B., 1984. Chloroplast metabolism. The structure and function of chloroplast in green leaf cells. Clarendon Press, Oxford, pp. 259.

    Google Scholar 

  • Harrison, P. G., 1982. Comparative growth of Zostera japonica Aschers. & Graebn. and Z. marina L. under simulated intertidal and subtidal conditions. Aquat. Bot. 14: 373–379.

    Google Scholar 

  • Hatcher, B. G., 1977. An apparatus for measuring photosynthesis and respiration of intact large marine algae and comparison of results with those from experiments with tissue segments. Mar. Biol. 43: 381–385.

    Google Scholar 

  • Isaac, W. E., 1933. Some observations and experiments on the drought resistance of Pelvetia canaliculata. Ann. Bot. 47: 343–348.

    Google Scholar 

  • Isaac, W. E., 1935. Preliminary study of the water loss of Laminaria digitata during intertidal exposure. Ann. Bot. 49: 109–117.

    Google Scholar 

  • Jerlov, N. G., 1976. Marine Optics. Elsevier Oceanogr Ser 14. Elsevier. Amsterdam, Oxford, New York.

    Google Scholar 

  • Jiménez, C., F. X. Niell & P. Algarra, 1987. Photosynthetic adaptations of Zostera noltii Hornem. Aquat. Bot. 29: 217–226.

    Google Scholar 

  • Johnson, W. S., A. Gigon, S. L. Gulmon & H. A. Mooney, 1974. Comparative photosynthetic capacities of intertidal algae under exposed and submerged conditions. Ecology 55: 450–453 pp.

    Google Scholar 

  • Johnston, A. M. & J. A. Raven, 1986a. The analysis of photosynthesis in air and water of Ascophyllum nodosum (L) Le Jol. Oecologia 69: 288–295.

    Google Scholar 

  • Johnston, A. M. & J. A. Raven, 1986. The utilization of bicarbonate ions by the macroalga Ascophyllum nodosum (L.) Le Jolis. Pl Cell Envir. 9: 175–184.

    Google Scholar 

  • Kerby, N. W. & J. A. Raven, 1985. Transport and fixation of inorganic carbon by marine algae. Adv. Bot. Res. 11: 71–123.

    Google Scholar 

  • Kirk, J. T. O., 1983. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, pp. 400.

    Google Scholar 

  • Lapointe, B. E., F. X. Niell & J. M. Fuentes, 1981. Community structure, succesion, and production of seaweeds associated with mussel-rafts in the Ría de Arosa, N. W. Spain. Mar. Ecol. Prog. Ser. 6: 243–253.

    Google Scholar 

  • Larkum, A. W. D., J. Roberts, J. Kuo & S. Strother, 1989. Gaseous movement in seagrasses. In Larkum, A. W. D., A. J. McComb & S. A. Shepherd (eds), Biology of seagrasses, Elsevier, 686–722 pp.

  • Lipkin, Y., 1979. Quantitative aspects of seagrass communities, particularly of those dominated by Halophila stipulacea, in Sinai (Northern Red Sea). Aquat. Bot. 7: 119–128.

    Google Scholar 

  • Lobban, C. S., P. J. Harrison & M. J. Duncan, 1985. The physiological ecology of seaweeds. Cambridge University. University Press, Cambridge, pp. 242.

    Google Scholar 

  • Lucas, W. J., 1975. Photosynthetic fixation of 14Carbon by internodal cells of Chara corallina. J. Exp. Bot. 26: 331–346.

    Google Scholar 

  • Lucas, W. J. & J. Dainty, 1977. HCO 3 influx across the plasmalema of Chara corallina. Divalent cation requirement. Plant Physiol. 60: 962–967.

    Google Scholar 

  • McMillan, C., 1984. The distribution of tropical seagrasses with relation to their tolerance of high temperatures. Aquat. Bot. 19: 369–379.

    Google Scholar 

  • Millhouse, J. & S. Strother, 1986. The effect of pH on the inorganic carbon source for photosynthesis in the seagrass Zostera muelleri Irmisch ex Aschers. Aquat. Bot. 24: 199–206.

    Google Scholar 

  • Muenscher, W. L. G., 1915. Ability of seaweeds to withstand desiccation. Publ. Puget Sound Biol. Sta. Univ. Wash. 1: 19–23.

    Google Scholar 

  • Oates, B. R. & S. N. Murray, 1983. Photosynthesis, dark respiration and desiccation resistance of the intertidal seaweeds Hesperophycus harveyanus and Pelvetia fastigiata f. gracilis. Mar. Biol. 89: 109–19.

    Google Scholar 

  • Penot, M. & M. Penot, 1979. High speed translocation of ions in seaweeds. Z. Pflanzenphysiol. 95: 265–273.

    Google Scholar 

  • Pérez-Lloréns, J. L., 1991. Estimaciones de biomasa y contenido interno de nutrientes, ecofisiología de incorporacíon de carbono en Zostera noltii Hornem. PhD. Thesis. University of Málaga, 168 pp.

  • Quadir, A., P. J. Harrison & R. E. DeWreede, 1979. The effects of emergence and submergence on the photosynthesis and respiration of marine macrophytes. Phycologia 1: 83–88.

    Google Scholar 

  • Raven, J. A., 1970. Exogenus inorganic carbon sources in plant photosynthesis. Biol. Rev. 45: 167–221.

    Google Scholar 

  • Raven, J. A. & J. Beardall, 1981. Carbon dioxide as the exogenus inorganic carbon source for Batrachospermum and Lemanea, Br. Phycol. J. 16: 165–175.

    Google Scholar 

  • Riley, J. P. & E. Skirrow, 1965. Chemical Oceanography. Vol. I Academic Press, London, pp. 712.

    Google Scholar 

  • Riley, J. P. & R. Chester, 1977. The dissolved gases in seawater. Part 2. Carbon dioxide. In: Introduction to Marine Chemistry. Academic Press INL, London LTP, pp. 465.

    Google Scholar 

  • Sand-Jensen, K., 1977. Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot. 3: 55–63.

    Google Scholar 

  • Sand-Jensen, K. & D. M. Gordon, 1984. Differential ability of marine and freshwater macrophytes to utilize HCO 3 and CO2. Mar. Biol. 80: 247–253.

    Google Scholar 

  • Sestack, Z., J. Catsky & P. G. Jarvis, 1971. Plant photosynthetic production: Manual of methods. Dr Junk Publisheers, The Hague, pp. 818.

    Google Scholar 

  • Setchell, W. A., 1929. Morphological and phenological notes on Zostera marina L. Univ. Calif. Publ. Bot. 14: 389–452.

    Google Scholar 

  • Smith, F. A. & N. A. Walker, 1980. Photosynthesis by aquatic plants: effects of unestirred layers in relation to assimilation of CO2 and HCO 3 and to carbon isotopic discrimination. New Phytol. 86: 245–259.

    Google Scholar 

  • Spence, D. H. N., R. M. Campbell & J. Chrystal, 1973. Specific leaf areas and zonation of freshwater macrophytes. J. Ecol. 61: 317–328.

    Google Scholar 

  • Stumm, W. & J. J. Moragn, 1970. Aquatic Chemistry. Willey-Interscience, New York, pp. 583.

    Google Scholar 

  • Wetzel, R. G. & H. L. Allen, 1970. Functions and interactions of dissolved organic matter and the litoral zone in lake metabolism and eutrophication. In Kajak, Z. & A. Hilbricht (eds), Productivity Problems of Freshwaters, PWN Polish Scientific Publishers, Warsaw: 333–347.

    Google Scholar 

  • Wetzel, R. G., 1975. Limnology. Saunders, Philadelphia, 743 pp.

    Google Scholar 

  • Wetzel, R. G. & P. A. Penhale, 1979. Transport of carbon and excretion of dissolved organic carbon by leaves and root/rhizomes in seagrass and their epiphytes. Aquat. Bot. 6: 149–158.

    Google Scholar 

  • Zieman, J. C. & R. G. Wetzel, 1980. Productivity in seagrasses: Methods and rates. In Phillips, R. C. & C. P. McRoy (eds), Handbook of seagrass biology, an ecosystem perspectve. Garland Press: 85–115

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Lloréns, J.L., Niell, F.X. Temperature and emergence effects on the net photosynthesis of two Zostera noltii Hornem. morphotypes. Hydrobiologia 254, 53–64 (1993). https://doi.org/10.1007/BF00007765

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007765

Key words

Navigation