Skip to main content
Log in

Guppies, toadfish, lungfish, coelacanths and frogs: a scenario for the evolution of urea retention in fishes

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

The question of how (and why) the ureosmotic strategy, characteristic of Latimeria chalumnae and the chondrichthians evolved is addressed. There are three requirements for ureosmotic regulation: urea synthesis via the ornithine-urea cycle, urea tolerance involving biochemical and physiological adjustments, and urea retention that requires renal, branchial, metabolic and reproductive adaptations. Several examples of lower vertebrates in which urea plays a physiological role are considered to see whether they might provide insight into the origin of ureosmotic regulation. The guppy shows high urea synthesis and retention during embryonic development, and it is possible that a developmental role of urea is a general phenomenon in fishes. The toadfish, thought to be an enigma with high urea synthesis in the absence of an obvious physiological role of urea, is ureotelic under some conditions. Its urea excretion is likely related to renal function and/or parental care. In lungfish high ureogenesis is associated with estivation in periodically dry habitats. The resultant hyperuremia prevents ammonia toxicity, inhibits water loss and may repress metabolism. Latimeria is a classic marine ureosmotic regulator in which urea is used as an osmolyte that allows osmotic equilibrium with sea water while maintaining low ion levels. Adults of the frog, Rana cancrivora, are also ureosmotic regulators in brackish water. A scenario is proposed that suggests how ureosmotic regulation could have evolved in Latimeria and other fishes. The ornithine-urea cycle (composed of an arginine synthetic pathway and a second pathway that splits arginine into urea) occurred in fossil anadromous agnathans. Here the first pathway functioned in the ammocoete-like larvae for the generation of arginine to supplement a protein-deficient diet of algae, whereas the arginase pathway was important in the embryo for vitellin catabolism. Gnathostome evolution was associated with trends towards large eggs and prolonged development, requiring a complete ornithine-urea cycle for ammonia detoxification in embryos. Retention of a complete ornithine-urea cycle throughout adult life (via paedomorphosis) would preadapt any relatively large, sluggish, euryhaline fish for ureosmotic regulation when it was exposed to sea water. It is suggested that ureosmotic regulators evolved from freshwater or anadromous ancestors that entered the marine habitat. Once early ureosmotic regulators were established in the sea there would have been strong selection for internal fertilization and development, as is seen in Latimeria and many elasmobranchs. It is suggested that ureosmotic regulation was a common strategy in Paleozoic marine gnathostomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Balinski, J.B., S.E. Dicker & A.B. Elliot. 1972. The effect of long-term adaptation to different levels of salinity on urea synthesis and tissue amino acid concentrations in Rana cancrivora. Comp. Biochem. Physiol. 43B: 71–82.

    Google Scholar 

  • Balon, E.K., M.N. Bruton & H. Fricke. 1988. A fiftieth anniversary reflection on the living coelacanth, Latimeria chalumnae: some new interpretations of its natural history and conservation status. Env. Biol. Fish. 23: 241–280.

    Google Scholar 

  • Bieter, R.N. 1931. The action of some diuretics upon the aglomerular kidney. J. Pharmacol. Exp. Therap. 43: 399.

    Google Scholar 

  • Bigelow, H.B. & W.C. Schroeder, 1953. Fishes of the Gulf of Maine. Fishery Bull. U.S. Fish Wildlife Ser. Vol. 53. 577 pp.

  • Bonaventura, J., C. Bonaventura & B. Sullivan. 1974. Urea tolerance as a molecular adaptation of elasmobranch hemoglobins. Science 186: 57–59.

    Google Scholar 

  • Boylan, J.W. 1967. Gill permeability in Squalus acanthias. pp. 197–206. In: P.W. Gilbert, R.F. Mathewson & D.P. Rall(ed.) Sharks, Skates and Rays, Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Brett, J.R. & J.M. Blackburn. 1978. Metabolic rate and energy expenditure in the spiny dogfish, Squalus acanthias. J. Fish. Res. Board Can. 35: 816–821.

    Google Scholar 

  • Brown, G.W. & S.G. Brown. 1967. Urea and its formation in coelacanth liver. Science 155: 570–573.

    Google Scholar 

  • Brown, G.W. & S.G. Brown. 1985. On urea formation in primitive fishes. pp. 321–337. In: R.E. Foreman, A. Gorbman, J.M. Dodd & R. Olsson(ed.) Evolutionary Biology of Primitive Fishes, Plenum Press, New York.

    Google Scholar 

  • Brown, G.W. & P.P. Cohen. 1960. Comparative biochemistry of urea synthesis. 3. Activities of urea-cycle enzymes in various higher and lower vertebrates. Biochem. J. 75: 82–91.

    Google Scholar 

  • Campbell, J.W. 1972. Nitrogen excretion. pp. 279–316. In: C.L. Prosser(ed.) Comparative Animal Physiology, 3rd. Ed., W.B. Saunders, Philadelphia.

    Google Scholar 

  • Campbell, K.S.W. & R.E. Barwick. 1986. Paleozoic lungfishes: a review. J. Morphol. Suppl. 1: 93–131.

    Google Scholar 

  • Carey, F.G., J.W. Kanwisher, O. Brazier, G. Gabrielson, J.C. Casey & H.L. Pratt. 1982. Temperature and activities of a white shark, Carcharodon carcharias. Copeia 1982: 254–260.

  • Carlinski, N.J. & A. Barrio 1972. Nitrogen metabolism of the South American lungfish, Lepidosiren paradoxa. Comp. Biochem. Physiol. 41B: 857–873.

    Google Scholar 

  • Chan, D.K.O. & T.M. Wong. 1977. Physiological adjustments to dilution of the external medium in the lip-shark Hemiscyllium plagiosum (Bennett), II. Branchial, renal and rectal gland function. J. Exp. Zool. 200: 85–96.

    Google Scholar 

  • Cole, D.F. 1968. Anterior chamber of the coelacanth eye. Br. J. Ophthal. 52: 415–418.

    Google Scholar 

  • Cole, D.F. 1973. Intraocular fluid composition in the coelacanth, Latimeria chalumnae. Exp. Eye Res. 16: 389–395.

    Google Scholar 

  • Compagno, L.J.V. 1979. Coelacanths: shark relatives or bony fishes? Occ. Pap. Calif. Acad. Sci. 134: 45–52.

    Google Scholar 

  • Depeche, J., R. Gilles, S. Daufresne & H. Chaipello. 1979. Urea content and urea production via the ornithine-urea cycle during the ontogenic development of two teleost fishes. Comp. Biochem. Physiol. 63A: 51–56.

    Google Scholar 

  • Evans, D.H. & J.N. Cameron. 1986. Gill ammonia transport. J. Exp. Zool. 239: 17–23.

    Google Scholar 

  • Forey, P. 1988. Golden jubilee for the coelacanth Latimeria chalumnae. Nature 336: 727–732.

    Google Scholar 

  • Forster, R.P. 1954. Active cellular transport of urea by frog renal tubules. Amer. J. Physiol. 179: 372–377.

    Google Scholar 

  • Funkhouser, D., L. Goldstein & R.P. Forster. 1972. Urea biosynthesis in the South American lungfish, Lepidosiren paradoxa: relation to its ecology. Comp. Biochem. Physiol. 41A: 439–443.

    Google Scholar 

  • Gans, C. 1985. Scenarios: why? pp. 1–9. In: R.E. Foreman, A. Gorbman, J.M. Dodd & R. Olsson(ed.) Evolutionary Biology of Primitive Fishes, Plenum Press, New York.

    Google Scholar 

  • Gilles-Baillien, M. 1973. Isosmotic regulation in various tissues of the diamondback terrapin, Malaclemys centrata (Latreille). J. Exp. Biol. 59: 39–43.

    Google Scholar 

  • Goldstein, L. & R.P. Forster. 1971. Urea biosynthesis and excretion in freshwater and marine elasmobranchs. Comp. Biochem. Physiol. 39B: 415–421.

    Google Scholar 

  • Goldstein, L., P.A. Janssens & R.P. Forster. 1967. Lungfish Neoceratodus forsteri: activities of ornithine-urea cycle and enzymes. Science 157: 316–317.

    Google Scholar 

  • Goldstein, L., W.W. Oppelt & T.H. Maren. 1968. Osmotic regulation and urea metabolism in the lemon shark Negaprion brevirostris. Amer. J. Physiol. 215: 1493–1497.

    Google Scholar 

  • Goldstein, L., S. Harley-DeWitt & R.P. Forster. 1973. Activities of ornithine-urea cycle enzymes and trimethylamine oxidase in the coelacanth, Latimeria chalumnae. Comp. Biochem. Physiol. 44B: 357–362.

    Google Scholar 

  • Gordon, M.S. 1965. Intracellular osmoregulation in skeletal muscle during salinity adaptation in two species of toads. Biol. Bull. (Woods Hole) 128: 218–229.

    Google Scholar 

  • Gordon, M.S., K. Schmidt-Nielsen & H.M. Kelly. 1961. Osmotic regulation in the crab-eating frog (Rana cancrivora). J. Exp. Biol. 38: 659–678.

    Google Scholar 

  • Gordon, M.S., I. Boetius, D.H. Evans, R. McCarthy & L.C. Oglesby. 1969. Aspects of the physiology of terrestrial life in amphibious fishes. I. The mudskipper, Periophthalmus sobrinus. J. Exp. Biol. 50: 141–149.

    Google Scholar 

  • Gordon, M.S. & V.E. Tucker. 1965. Osmotic regulation in tadpoles of the crab-eating frog (Rana cancrivora). J. Exp. Biol. 42: 437–445.

    Google Scholar 

  • Gregory, R.B. 1977. Synthesis and total excretion of waste nitrogen by fish of the Periophthalmus (mudskipper) and Scartelsaas families. Comp. Biochem. Physiol. 57A: 33–36.

    Google Scholar 

  • Griffith, R.W. 1980. Chemistry of the body fluids of the coelacanth, Latimeria chalumnae. Proc. Roy. Soc. (Lond.) B. 208: 329–347.

    Google Scholar 

  • Griffith, R.W. 1981. Compositon of the blood serum of deep-sea fishes. Biol. Bull. (Woods Hole) 160: 250–264.

    Google Scholar 

  • Griffith, R.W. 1985. Habitat, phylogeny and the evolution of osmoregulatory strategies in primitive fishes. pp. 69–80. In: R.E. Foreman, A. Gorbman, J.M. Dodd & R. Olson(ed.) Evolutionary Biology of Primitive Fishes, Plenum Press, New York.

    Google Scholar 

  • Griffith, R.W. 1987. Freshwater or marine origin of the vertebrates? Comp. Biochem. Physiol. 87A: 523–531.

    Google Scholar 

  • Griffith, R.W., M.B. Mathews, B.L. Umminger, B.F. Grant, P.K.T. Pang, K.S. Thomson & G.E. Pickford. 1975. Composition of fluid from the notochordal canal of the coelacanth, Latimeria chalumnae. J. Exp. Zool. 192: 165–172.

    Google Scholar 

  • Griffith, R.W. & P.K.T. Pang. 1979. Mechanisms of osmoregulation in the coelacanth: evolutionary implications. Occ. Pap. Calif. Acad. Sci. 134: 79–93.

    Google Scholar 

  • Griffith, R.W., P.K.T. Pang & L.A. Benedetto. 1979. Urea tolerance in the killifish, Fundulus heteroclitus. Comp. Biochem. Physiol. 62A: 327–330.

    Google Scholar 

  • Griffith, R.W., P.K.T. Pang, A.K. Srivastava & G.E. Pickford. 1973. Serum composition of freshwater stingrays (Potamotrygonidae) adapted to fresh and dilute sea water. Biol. Bull. (Woods Hole) 144: 304–320.

    Google Scholar 

  • Griffith, R.W., B.L. Umminger, B.F. Grant, P.K.T. Pang, L. Goldstein & G.E. Pickford. 1976. Composition of bladder urine of the coelacanth, Latimeria chalumnae. J. Exp. Zool. 196: 371–380.

    Google Scholar 

  • Griffith, R.W., B.L. Umminger, B.F. Grant, P.K.T. Pang & G.E. Pickford. 1974. Serum composition of the coelacanth, Latimeria chalumnae Smith. J. Exp. Zool. 187: 87–102.

    Google Scholar 

  • Haywood, G.P. 1974. The exchangeable ionic space, and salinity effects upon ion, water and urea turnover rates in the dogfish, Poroderma africanum. Mar. Biol. 29: 267–276.

    Google Scholar 

  • Holliday, F.G.T. 1969. The effects of salinity on the eggs and larvae of teleosts. pp. 293–311. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 1, Academic Press, New York.

  • Hughes, G.M. 1976. On the respiration of Latimeria chalurnnae. Zool. J. Linn. Soc. 59: 195–208.

    Google Scholar 

  • Hughes, G.M. & M. Morgan. 1973. The structure of fish gills in relation to their respiratory function. Biol. Rev. 48: 419–475.

    Google Scholar 

  • Hugonenq, L. & G. Florence. 1921. Experience du cours se reapportant a l'azotemia. Bull. Soc. Chim. Biol. 3: 174–175.

    Google Scholar 

  • Janssens, P.A. 1964. The metabolism of the aestivating African lungfish. Comp. Biochem. Physiol. 11: 105–117.

    Google Scholar 

  • Janssens, P.A. & P.P. Cohen, 1968. Nitrogen metabolism in the African lungfish. Comp. Biochem. Physiol. 24: 879–886.

    Google Scholar 

  • Knight, I.T., D.J. Grimes & R.R. Colwell. 1988. Bacterial hydrolysis of urea in the tissues of carcharhinid sharks. Can. J. Fish. Aq. Sci. 45: 357–360.

    Google Scholar 

  • Lacy, E.R., E. Reale, D. Schlusselberg, W.K, Smith & D.J. Woodward. 1985. A renal countercurrent system in marine elasmobranch fish: a computer assisted reconstruction. Science 227: 1351–1354.

    Google Scholar 

  • Lagios, M.D. 1979. The coelacanth and Chondrichthyes as sister groups: a review of shared apomorph characters and a cladistic analysis and reinterpretation. Occ. Pap. Calif. Acad. Sci. 134: 25–44.

    Google Scholar 

  • Lagios, M.D. 1982. Latimeria and the Chondrichthyes as sister groups: a rebuttal to recent attempts at refutation. Copeia 1982: 942–948.

  • Lagios, M.D. & J.E. McCosker. 1977. A cloacal excretory gland in the lungfish Protopterus. Copeia 1977: 176–178.

  • Lahlou, B., I.W. Henderson & W.H. Sawyer. 1969. Renal adaptations by Opsanus tau, a euryhaline aglomerular teleost to dilute media. Amer. J. Physiol. 216: 1266–1272.

    Google Scholar 

  • Love, R.M. 1970. The chemical biology of fishes. Academic Press. New York. 547 pp.

    Google Scholar 

  • Løvtrup, S. 1977. The phylogeny of vertebrata. John Wiley and Sons, London. 330 pp.

    Google Scholar 

  • Lutz, P.L. & J.D. Robertson. 1971. Osmotic constituents of the coelacanth, Latimeria chalumnae Smith. Biol. Bull. (Woods Hole) 141: 553–560.

    Google Scholar 

  • Mallatt, J. 1984. Early vertebrate evolution: pharyngeal structure and the origin of gnathostomes. J. Zool. (Lond.) 204: 169–183.

    Google Scholar 

  • Mallatt, J. 1985. Reconstructing the life cycle and the feeding of ancestral vertebrates. pp. 59–68. In: R.E. Foreman, A. Gorbman, J.M. Dodd & R. Olsson(ed.) Evolutionary Biology of Primitive Fishes, Plenum Press, New York.

    Google Scholar 

  • Marshall, E.K. & A.L. Grafflin. 1932. The function of the proximal convoluted segment of the renal tubule. J. Cell. Comp. Physiol. 1: 161–176.

    Google Scholar 

  • Marusik, E.T., F. Balbontin. S.M. Galli-Gallardo, M. Garreton. P.K.T. Pang & R.W. Griffith. 1981. Osmotic adaptations of the Chilean clingfish, Sicyases sanguineus, during emersion. Comp. Biochem. Physiol. 68A: 123–126.

    Google Scholar 

  • Mathews, M.B. 1962. Sodium chondroitin sulfate-protein complexes of cartilage, III. Preparations from shark. Biochem. Biophys. Acta 58: 92–101.

    Google Scholar 

  • Mathews, M.B. 1966. The molecular evolution of cartilage. Clin. Orthop. 48: 267–283.

    Google Scholar 

  • Mathews, M.B. 1967. Macromolecular evolution of connective tissue. Biol. Rev. 42: 499–551.

    Google Scholar 

  • McBean, R.L. & L. Goldstein. 1970. Renal function during osmotic stress in the aquatic toad, Xenopus laevis. Amer. J. Physiol. 219: 1115–1123.

    Google Scholar 

  • McClanahan, L. 1967. Adaptations of the spadefoot toad, Scaphiopus couchi, to desert environments. Comp. Biochem. Physiol. 20: 73–99.

    Google Scholar 

  • Miles, R.S. 1967. Observations on the ptyctodont fish, Rhamphodopsis Watson. J. Linn. Soc. Lond. (Zool.) 47: 99–120.

    Google Scholar 

  • Mommsen, T.P. & P.J. Walsh. 1989. Evolution of urea synthesis in vertebrates: the piscine connection. Science 243: 72–75.

    Google Scholar 

  • Morris, R. 1972. Osmoregulation. pp. 193–239. In: M.W. Hardisty & I.C. Potter (ed.) The Biology of Lampreys, Vol. 2, Academic Press, London.

  • Moy-Thomas, J.A. & R.S. Miles. 1971. Paleozoic fishes. 2nd Ed., W.B. Saunders, Philadelphia. 259 pp.

    Google Scholar 

  • Pang, P.K.T., R.W. Griffith & J.W. Atz. 1977. Osmoregulation in elasmobranchs. Amer. Zool. 17: 365–377.

    Google Scholar 

  • Payan, P., L. Goldstein & R.P. Forster. 1973. Gills and kidney in ureosmotic regulation in euryhaline skates. Amer. J. Physiol. 224: 367–372.

    Google Scholar 

  • Pickford, G.E. & F.B. Grant. 1967. Serum osmolarity in the coelacanth, Latimeria chalumnae: urea retention and ion regulation. Science 155: 568–570.

    Google Scholar 

  • Rasmussen, L.E. 1979. Some biochemical parameters in the coelacanth, Latimeria chalumnae, ventricular and notochordal fluid. Occ. Pap. Calif. Acad. Sci. 134: 94–110.

    Google Scholar 

  • Read, L.J. 1968. A study of ammonia and urea production and excretion in the freshwater-adapted form of the Pacific lamprey, Entosphenus tridentatus. Comp. Biochem. Physiol. 26: 455–466.

    Google Scholar 

  • Read, L.J. 1971. The presence of high ornithine-urea cycle enzyme activity in the teleost, Opsanus tau. Comp. Biochem. Physiol. 39B: 409–413.

    Google Scholar 

  • Read, L.J. 1975. Absence of ureogenic pathways in the liver of hagfish, Bdellostoma cirrhatum. Comp. Biochem. Physiol. 51B: 139–141.

    Google Scholar 

  • Schmidt-Nielsen, B., B. Truniger & L. Rabinowitz. 1972. Sodium-linked urea transport by the renal tubule of the spiny dogfish, Squalus acanthias. Comp. Biochem. Physiol. 42A: 13–25.

    Google Scholar 

  • Schmidt-Nielsen, K. & P. Lee. 1962. Kidney function in the crab-eating frog (Rana cancrivora). J. Exp. Biol. 39: 167–177.

    Google Scholar 

  • Schoffeniels, E. & R.R. Tercefs. 1966. L'osmoregulation chez les batraciens. Ann. Soc. R. Zool. Belg. 96: 23–39.

    Google Scholar 

  • Schultze, H.-P. 1972. Early growth stages in coelacanth fishes. Nature (New Biology) 236: 90–91.

    Google Scholar 

  • Smith, C.L., C.S. Rand, B. Schaeffer & J.W. Atz. 1975. Latimeria, the living coelacanth, is ovoviviparous. Science 190: 1105–1106.

    Google Scholar 

  • Smith, H.W. 1930. Metabolism of the lungfish, Protopterus aethiopicus. J. Biol. Chem. 86: 97–130.

    Google Scholar 

  • Smith, H.W. 1931. The absorption and excretion of water and salts by the elasmobranch fishes, II. Marine elasmobranchs. Amer. J. Physiol. 98: 296–310.

    Google Scholar 

  • Smith, H.W. 1953. From fish to philosopher. Little, Brown and Co., Boston. 264 pp.

    Google Scholar 

  • Suyama, M. & C. Ogino. 1958. Changes in chemical composition during development of rainbow trout eggs. Bull. Jap. Soc. Sci. Fish. 23: 785–788.

    Google Scholar 

  • Thomson, K.S. 1969. The environment and distribution of Paleozoic sarcopterygian fish. Amer. J. Sci. 267: 457–464.

    Google Scholar 

  • Thomson, K.S. 1971. The adaptation and evolution of early fishes. Q. Rev. Biol. 46: 139–166.

    Google Scholar 

  • Thorson, T.B., C.M. Cowan & D.E. Watson. 1967. Potamotrygon spp.: elasmobranchs with low urea content. Science 158: 375–377.

    Google Scholar 

  • Tytler, P. & J.H.S. Blaxter. 1988. The effects of external salinity on the drinking rates of larvae of herring, plaice and cod. J. Exp. Biol. 138: 1–15.

    Google Scholar 

  • Vellas, F. & A. Serfaty. 1967. Sur l'excretion ureique de la carpe (Cyprinus carpio L.). Arch. Sci. Physiol. 21: 185–192.

    Google Scholar 

  • Watson, D.M.S. 1927. The reproduction of the coelacanth fish, Undina. Proc. Zool. Soc. Lond. 1927: 453–458.

    Google Scholar 

  • Wiley, E.O. 1979. Ventral gill arch muscles and the phylogenetic relationships of Latimeria. Occ. Pap. Calif. Acad. Sci. 134: 56–67.

    Google Scholar 

  • Wourms, J.P. 1977. Reproduction and development in chondrichthyan fishes. Amer. Zool. 17: 379–410.

    Google Scholar 

  • Yancey, P.H. & G.N. Somero. 1978. Urea-requiring lactate dehydrogenase of marine elasmobranch fishes. J. Comp. Physiol. 125: 135–141.

    Google Scholar 

  • Yancey, P.H. & G.N. Somero. 1979. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem. J. 183: 317–323.

    Google Scholar 

  • Yancey, P.H. & G.N. Somero. 1980. Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J. Exp. Zool. 212: 205–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffith, R.W. Guppies, toadfish, lungfish, coelacanths and frogs: a scenario for the evolution of urea retention in fishes. Environ Biol Fish 32, 199–218 (1991). https://doi.org/10.1007/BF00007454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007454

Key words

Navigation