Skip to main content
Log in

Central nervous system myelin proteins of the coelacanth Latimeria chalumnae: phylogenetic implications

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Myelin was isolated from the brain of a coelacanth. Its protein components were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate (SDS-PAGE). A protein component of 25000 Dalton was predominant; it was not glycosylated but reacted moderately with anti-mammalian CNS myelin proteolipid protein (PLP) antibodies and weakly with anti-lungfish CNS myelin glycosylated proteolipid protein (gPLP) antibodies. A component equivalent to mammalian DM-20 was not detectable. Presumably due to autolysis myelin basic protein (MBP) was not discernible by protein staining but showed up as a single band of 17000 Dalton with anti-mammalian MBP antibodies. Wolfgram protein (WP) was not present upon immunoblotting and the values for the myelin-specific 2′, 3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) were extremely low. These results question a chondrichthyan association of the coelacanth but are strongly in favor of an Actinistia-Tetrapoda sister group relationship, with Dipnoi being most closely related to that combined group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Berlet, H.H. & B. Volk. 1980. Studies of human myelin proteins during old age. Mechanisms of Ageing and Development 14: 211–222.

    Google Scholar 

  • Braun, P.E. 1984. Molecular organization of myelin. pp. 97–116. In: P. Morell(ed.) Myelin, Plenum Press, New York.

    Google Scholar 

  • Bullock, T.H. 1974. Comparisons between vertebrates and invertebrates in nervous organization. pp. 343–346. In: F.O. Schmitt & F.G. Worden(ed.) The Neurosciences, Third Study Program, MIT Press, Cambridge.

    Google Scholar 

  • Bullock, T.H., J.K. Moore & R.D. Fields. 1984, Evolution of myelin sheaths: both lamprey and hagfish lack myelin. Neurosci. Lett. 48: 145–148.

    Google Scholar 

  • Compagno, L.J.V. 1979. Coelacanths: shark relatives or bony fishes? Occ. Pap. Calif. Acad. Sci. 134: 45–52.

    Google Scholar 

  • Diehl, H.A., M. Schaich, R.-M. Budzinski & W. Stoffel. 1986. Individual exons encode the integral membran domains of human myelin proteolipid protein. Proc. Nat. Acad. Sci. USA 83: 9807–9811.

    Google Scholar 

  • Dingerkus, G. 1979. Chordate cytogenetic studies: an analysis of their phylogenetic implications with particular references to fishes and the living coelacanth. Occ. Pap. Calif Acad. Sci. 134: 111–126.

    Google Scholar 

  • Drummond, R.J. & G. Dean. 1980. Comparison of 2′, 3′-cyclic nucleotide 3′-phosphodiesterase and the major component of Wolfgram protein W l. J. Neurochem. 35: 1155–1165.

    Google Scholar 

  • Forey. P.L. 1986. Relationships of lungfishes. J. Morph. Supp. 1: 75–91.

    Google Scholar 

  • Forey. P.L. 1988. Golden jubilee for the coelacanth Latimeria chalumnae. Nature 336: 727–732.

    Google Scholar 

  • Franz, T., T.V. Waehneldt, V. Neuhoff & K. Wächtler. 1981. Central nervous system myelin proteins and glycoproteins in vertebrates: a phylogenetic study. Brain Res. 226: 245–258.

    Google Scholar 

  • Fritzsch, B. 1987. Inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327: 153–154.

    Google Scholar 

  • Goodman, M., M.M. Miyamoto & J. Czelusniak. 1987. Pattern and process in vertebrate phylogeny revealed by coevolution of molecules and morphologies. pp. 141–176. In: C. Patterson(ed.) Molecules and Morphology in Evolution: Conflict or Comprise? Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Holmes, E.B. 1985. Are lungfishes the sister group of tetrapods? Biol. J. Linn. Soc. 25: 379–397.

    Google Scholar 

  • Jarvik, E. 1980. Basic structure and evolution of vertebrates. 2 vol., Academic Press, London. 575 pp.

  • Jeserich, G. & T.V. Waehneldt. 1986. Bony fish myelin: evidence for common major structural glycoproteins in central and peripheral myelin of trout. J. Neurochem. 46: 525–533.

    Google Scholar 

  • Karin, N.J. & T.V. Waehneldt. 1985. Biosynthesis and insertion of Wolfgram protein into optic nerve membranes. Neurochem. Res. 10: 897–907.

    Google Scholar 

  • Kirschner, D.A. & A.L. Ganser. 1980. Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature 283: 207–210.

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Google Scholar 

  • Lagios, M.D. 1979. The coelacanth and the chondrichthyes as sister groups: a review of shared apomorph characters and a cladistic analysis and reinterpretation. Occ. Pap. Calif. Acad. Sci. 134: 25–44.

    Google Scholar 

  • Lagios, M.D. 1982. Latimeria and the chondrichthyes as sister taxa: a rebuttal to recent attempts at refutation. Copeia 1982: 942–948.

  • Laursen, R.A., M. Samiullah & M.B. Lees. 1984. The structure of bovine brain myelin proteolipid and its organization in myelin. Proc. Nat. Acad. Sci. USA 81: 2912–2916.

    Google Scholar 

  • Lees, M.B. & S.W. Brostoff. 1984. Proteins of myelin. pp. 197–224. In: P. Morell(ed.) Myelin, Plenum Press, New York.

    Google Scholar 

  • Lemke, G. & R. Axel. 1985. Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell 40: 501–508.

    Google Scholar 

  • Lemke, G., E. Lamar & J. Patterson. 1988. Isolation and analysis of the gene encoding myelin protein zero. Neuron 1: 73–83.

    Google Scholar 

  • Linington, C., M. Webb & P.L. Woodhams. 1984. A novel myelin-associated glycoprotein defined by a mouse monoclonal antibody. J. Neuroimmunol. 6: 387–396.

    Google Scholar 

  • Løvtrup, S. 1977. The phylogeny of the vertebrata. John Wiley and Sons, London. 330 pp.

    Google Scholar 

  • Lowry, O.H., N.J. Rosebrough, A.L. Farr & R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Matthieu, J.M. & P. Burgisser. 1983. Radioimmunological determination of myelin basic protein in the CSF of neurological patients. pp. 223–226. In: H. Peeters (ed.) Protides of the Biological Fluids, Vol. 30, Pergamon Press, Oxford.

  • Matthieu, H.-M., G. Almazan & T.V. Waehneldt. 1983. Intrinsic myelin proteins are normally synthesized in vitro in the myelin deficient (mld) mutant mouse. Dev. Neurosci. 6: 246–250.

    Google Scholar 

  • Matthieu, J.-M., M. Eschmann, P. Bürgisser, J. Malotka & T.V. Waehneldt. 1986a. Expression of myelin proteins characteristic of fish and tetrapods by Polypterus revitalizes long discredited phylogenetic links. Brain Res. 379: 137–142.

    Google Scholar 

  • Matthieu, J.-M., T.V. Waehneldt & N. Eschmann. 1986b. Meylin-associated glycoprotein and myelin basic protein are present in central and peripheral nerve myelin throughout phylogeny. Neurochem. Int. 8: 521–526.

    Google Scholar 

  • Nave, K.-A., C. Lai, F.E. Bloom & R.J. Milner. 1987. Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc. Nat. Acad. Sci. 84: 5665–5669.

    Google Scholar 

  • Newcombe, J., P. Glynn & M.L. Cuzner. 1982. The immunological identification of brain proteins on cellulose nitrate in human demyelinating disease. J. Neurochem. 38. 267–274.

    Google Scholar 

  • Northcutt, R.G. 1986. Lungfish neural characters and their bearing on sarcopterygian phylogeny. J. Morph. Supp. 1: 277–297.

    Google Scholar 

  • Norton, W.T. & W. Cammer. 1984. Isolation and characterization of myelin. pp. 147–195. In: P. Morell(ed.) Myelin, Plenum Press, New York.

    Google Scholar 

  • Patterson, C. 1982. Morphologies and interrelationships of primitive actinopterygian fishes. Amer. Zool. 22: 241–259.

    Google Scholar 

  • Prohaska, J.R., D.A. Clark & W.W. Wells. 1973. Improved rapidity and precision in the determination of brain 2′, 3′cyclic nucleotide 3′-phosphohydrolase. Analyt. Biochem. 56: 275–282.

    Google Scholar 

  • Raine, C.S. 1984. Morphology of myelin and myelination. pp. 1–50. In: P. Morell(ed.) Myelin, Plenum Press, New York.

    Google Scholar 

  • Ritchie, J.M. 1984. Physiological basis of conduction in myelinated nerve fibres. pp. 117–145. In: P. Morell(ed.) Myelin, Plenum Press, New York.

    Google Scholar 

  • Romer, A.S. 1966. Vertebrate paleontology, 3rd ed. University of Chicago Press, Chicago. 468 pp.

    Google Scholar 

  • Rosen, D.E., P.L. Forey, B.G. Gardiner & C. Patterson. 1981. Lungfishes, tetrapods, paleontology, and plesiomorphy. Bull. Amer. Mus. Nat. Hist. 167: 159–276.

    Google Scholar 

  • Sakamoto, Y., K. Kitamura, K. Yoshimura, T. Nishijima & K. Uyemura. 1987. Complete amino acid sequence of P0 protein in bovine peripheral nerve myelin. J. Biol. Chem. 262: 4298–4214.

    Google Scholar 

  • Schott, K.-J., V. Neuhoff, B. Nessel, U. Pötter & J. Schröter. 1984. Staining of concanavalin A-reactive glycoproteins on polyacrylamide gels with horseradish peroxidase — a critical evaluation. Electrophoresis 5: 77–83.

    Google Scholar 

  • Schultze, H.-P. 1986. Dipnoans as sarcopterygians. J. Morph. Supp. 1: 39–74.

    Google Scholar 

  • Schultze, H.-P. 1988. Notes on the structure and phylogeny of vertebrate otoliths. Copeia 1988: 257–259.

  • Simons, R., N. Alon & J.R. Riordan. 1987. Human myelin DM-20 proteolipid protein deletion defined by cDNA sequence. Biochem. Biophys. Res. Comm. 146: 666–671.

    Google Scholar 

  • Sprinkle, T.J., M.R. Wells, F.A. Garver & D.B. Smith. 1980. Studies on the Wolfgram high molecular weight CNS myelin proteins: relationship to 2′, 3′-cyclic nucleotide 3′-phosphodiesterase. J. Neurochem. 35: 1200–1208.

    Google Scholar 

  • Stoffel, W., H. Hillen, W. Schröder & R. Deutzmann. 1983. The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein). Hoppe-Seyler's Z. Physiol. chem. 364: 1455–1466.

    Google Scholar 

  • Stoffel, W., H. Hillen & H. Giersiefen. 1984. Structure and molecular arrangement of proteolipid protein of central nervous system myelin. Proc. Nat. Acad. Sci. USA 81: 5012–5016.

    Google Scholar 

  • Tai, F.L. & R. Smith. 1984. Comparison of the major proteins in shark myelin with the proteins of higher vertebrates. J. Neurochem. 42: 426–433.

    Google Scholar 

  • Tamai, Y., H. Kojima & K. Abe. 1986. Chemical characterization of the brain of a coelacanth, Latimeria chalumnae. Comp. Biochem. Physiol. 83: 295–299.

    Google Scholar 

  • Towbin, H., T. Staehelin & J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Nat. Acad. Sci. USA 76: 4350–4354.

    Google Scholar 

  • Vogel, U.S. & R.J. Thompson. 1988. Molecular structure, localization, and possible functions of the myelin-associated enzyme 2′, 3′-cyclic nucleotide 3′-phosphodiesterase. J. Neurochem. 50: 1667–1677.

    Google Scholar 

  • Wachneldt, T.V. & J. Malotka. 1980. Comparative electrophoretic study of the Wolfgram proteins in myelin from several mammalia. Brain Res. 189: 582–587.

    Google Scholar 

  • Waehneldt, T.V. & G. Jeserich. 1984. Biochemical characterization of the central nervous system myelin proteins of the rainbow trout, Salmo gairdneri. Brain Res. 309: 127–134.

    Google Scholar 

  • Waehneldt, T.V. M.-L. Kiene, J. Malotka, C. Kiecke & V. Neuhoff. 1984. Nervous system myelin in the electric ray, Torpedo marmorata: morphological characterization of the membrane and biochemical analysis of its protein components. Neurochem. Int. 6: 223–235.

    Google Scholar 

  • Waehneldt, T.V., J. Malotka, N.J. Karin & J.-M. Matthieu. 1985. Phylogenetic examination of vertebrate central nervous system myelin proteins by electro-immunoblotting. Neurosci. Lett. 57: 97–102.

    Google Scholar 

  • Waehneldt, T.V., J.-M. Matthieu & G. Jeserich. 1986a. Appearance of myelin proteins during vertebrate evolution. Neurochem. Int. 9: 463–474.

    Google Scholar 

  • Waehneldt, T.V., J.-M. Matthieu & G. Jeserich. 1986b. Major central nervous system myelin glycoprotein of the African lungfish (Protopterus dolloi) cross-reacts with myelin proteolipid protein antibodies, indicating a close phylogenetic relationship with amphibians. J. Neurochem. 46: 1387–1391.

    Google Scholar 

  • Waehneldt, T.V., J.-M. Matthieu, J. Malotka & J. Joss. 1987. A glycosylated proteolipid protein is common to CNS myelin of recent lungfish (Ceratodidae, Lepidosirenidae). Comp. Biochem. Physiol. 88: 1209–1212.

    Google Scholar 

  • Wahlert, G. von 1968. Latimeria und die Geschichte der Wirbeltiere. Eine evolutionsbiologische Untersuchung. Gustav Fischer Verlag, Stuttgart. 125 pp.

    Google Scholar 

  • Wiley, E.O. 1979. Ventral gill arch muscles and the phylogenetic relationship of Latimeria. Occ. Pap. Calif. Acad. Sci. 134: 56–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waehneldt, T.V., Malotka, J., Jeserich, G. et al. Central nervous system myelin proteins of the coelacanth Latimeria chalumnae: phylogenetic implications. Environ Biol Fish 32, 131–143 (1991). https://doi.org/10.1007/BF00007449

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007449

Key words

Navigation