Skip to main content
Log in

Exchange between interstitial and surface water: Implications for stream metabolism and nutrient cycling

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Metabolism of a Sonoran Desert stream was investigated by both enclosure and whole system oxygen techniques. We used recirculating chambers to estimate surface sediment metabolism and measured deep sediment respiration in isolated sediment cores. Metabolism of the stream ecosystem was determined for a 30-m reach as dark and light oxygen change with and without black plastic sheeting that darkened the stream and prevented diffusion. Average ecosystem respiration for two dates in August (440 mg O2 m-2 h-1) exceeded respiration of either the surface sediment community (155 Mg O2 m-2 h-1) or the hyporheic community (170 mg O2 m-2 h-1) alone. Deep sediments show substantial oxygen and nitrate uptake when isolated. In the stream, this low nitrate interstitial water is exchanged with surface water. Metabolism of the isolated surface community suggests a highly productive and autotrophic system, yet gross production is balanced or exceeded by community respiration when ecosystem boundaries include the hyporheic zone. Thus, despite high rates of gross primary production (600–1200 mg O2 m-2 h-1), desert streams may be heterotrophic (PG < R) during summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beschta, R. L. & W. L. Jackson, 1979. The intrusion of fine sediments into a stable gravel bed. J. Fish. Res. Bd Can. 36: 204–210.

    Google Scholar 

  • Busch, D. E. & S. G. Fisher, 1981. Metabolism of a desert stream. Freshwat. Biol. 11: 301–307.

    Article  CAS  Google Scholar 

  • Chatarpaul, L. & J. B. Robinson, 1979. Nitrogen transformations in stream sediments: 15N studies. In C. D. Litchfield & P. L. Seyfried, (eds), Methodology for biomass determinations and microbial activities in sediments. Am. Soc. Testing & Materials, Publ. STP 673: 119–127.

  • Churchill, M. A., R. A. Buckingham & H. L. Elmore, 1962. The prediction of stream reaeration rates. Tennessee Valley Authority, Chattanooga, TN.

    Google Scholar 

  • Coble, D. W., 1961. Influence of water exchange and dissolved oxygen in redds, on survival of steelhead trout embryos. Trans. am. Fish. Soc. 90: 469–474.

    Article  Google Scholar 

  • Coleman, M. J. & H. B. N. Hynes, 1970. The vertical distribution of the invertebrate fauna in the bed of a stream. Limnol. Oceanogr. 15: 31–40.

    Google Scholar 

  • Everest, J. W. & D. E. Davis, 1979. Studies of phosphorus movement using salt marsh microecosystems. J. envir. Qual. 8: 465–468.

    CAS  Google Scholar 

  • Fisher, S. G., 1977. Organic matter processing by a stream-segment ecosystem: Fort River, Massachusetts, USA. Int. Revue ges. Hydrobiol. 62: 701–727.

    Google Scholar 

  • Fisher, S. G., L. J. Gray, N. B. Grimm & D. E. Busch, 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. 52: 93–110.

    Article  CAS  Google Scholar 

  • Fisher, S. G. & W. L. Minckley, 1978. Chemical characteristics of a desert stream in flash flood. J. Arid Envir. 1: 25–33.

    Google Scholar 

  • Grimm, N. B., S. G. Fisher & W. L. Minckley, 1981. Nitrogen and phosphorus dynamics in hot desert streams of Southwestern U.S.A. Hydrobiologia 83: 303–312.

    Article  CAS  Google Scholar 

  • Hale, S. S., 1975. The role of benthic communities in the nitrogen and phosphorus cycles of an estuary. In F. G. Howell, J. B. Gentry & M. H. Smith, (eds), Mineral Cycling in Southeastern Ecosystems. ERDA Symp. Series: 291–307.

  • Hansmann, E. W., C. B. Lane & J. D. Hall, 1971. A direct method of measuring benthic primary production in streams. Limnol. Oceanogr. 16: 822–826.

    Google Scholar 

  • Hargrave, B. T., 1973. Coupling carbon flow through some pelagic and benthic communities. J. Fish. Res. Bd Can. 30: 1317–1326.

    Google Scholar 

  • Hart, I. C., 1967. Nomograms to calculate dissolved-oxygen contents and exchange (mass-transfer) coefficients. Wat. Res. 1: 391–395.

    Article  CAS  Google Scholar 

  • Herbst, G. N., 1980. Effects of burial on food value and consumption of leaf detritus by aquatic invertebrates in a lowland forest stream. Oikos 35: 411–424.

    Google Scholar 

  • Hill, A. R., 1981. Nitrate-nitrogen flux and utilization in a stream ecosystem during low summer flows. Can. Geogr. 25: 225–239.

    Google Scholar 

  • Hornick, L. E., J. R. Webster & E. F. Benfield, 1981. Periphyton production in an Appalachian Mountain trout stream. Am. Midl. Nat. 106: 22–36.

    Article  Google Scholar 

  • Howarth, R. W. & S. G. Fisher, 1976. Carbon, nitrogen, and phosphorus dynamics during leaf decay in nutrient-enriched stream microecosystems. Freshwat. Biol. 6: 221–228.

    Article  CAS  Google Scholar 

  • Kaushik, N. K. & H. B. N. Hynes, 1968. Experimental study on the role of autumn-shed leaves in aquatic environments. J. Ecol. 56: 229–243.

    Article  Google Scholar 

  • Kaushik, N. K. & J. B. Robinson, 1976. Preliminary observations on nitrogen transport during summer in a small spring-fed Ontario stream. Hydrobiologia 49: 59–63.

    CAS  Google Scholar 

  • Keeney, D. R., 1973. The nitrogen cycle in sediment-water systems. J. envir. Qual. 2: 15–29.

    Article  CAS  Google Scholar 

  • Marker, A. F., 1976. The benthic algae of some streams in southern England. II. Primary production of the epilithon in a chalk stream. J. Ecol. 64: 359–375.

    Article  CAS  Google Scholar 

  • McGee, W. J., 1897. Sheetflood erosion. Bull. Geol. Soc. Am. 8: 87–112.

    Google Scholar 

  • McNeil, W. J., 1962. Variations in the dissolved oxygen content of intragravel water in four spawning streams of southeastern Alaska. U.S. Fish Wildl. Serv. Spec. sci. Rep.-Fish. No. 402.

  • Minshall, G. W., 1978. Autotrophy in stream ecosystems. Bioscience 28: 767–771.

    Article  Google Scholar 

  • Moring, J. R., 1982. Decrease in stream gravel permeability after clear-cut logging: an indication of intragravel conditions for developing salmonid eggs and alevins. Hydrobiologia 88: 295–298.

    Article  Google Scholar 

  • Mulholland, P. J., 1981. Organic carbon flow in a swamp-stream ecosystem. Ecol. Monogr. 51: 307–322.

    Article  CAS  Google Scholar 

  • Nixon, S. W., C. A. Oviatt & S. S. Hale, 1975. Nitrogen regeneration and the metabolism of coastal marine bottom communities. In V. Anderson & A. McFayden (eds), The role of terrestrial and aquatic organisms in decomposition processes. Proc. br. Ecol. Soc. Symp. on Decomp., Coleraine, N. Ireland. Blackwell, Oxford: 269–283.

    Google Scholar 

  • Odum, H. T., 1956. Primary production of flowing water. Limnol. Oceanogr. 1: 102–117.

    Google Scholar 

  • Pfeiffer, R. & W. McDiffett, 1975. Some factors affecting primary production of stream communities. Arch. Hydrobiol. 75: 306–317.

    Google Scholar 

  • Rich, P. H., 1979. Differential CO2 and O2 benthic community metabolism in a soft-water lake. J. Fish. Res. Bd Can. 36: 1377–1389.

    CAS  Google Scholar 

  • Rich, P. H. & A. H. Devol, 1978. Analysis of five North American lake ecosystems: VII. Sediment processing. Verb. int. Ver. Limnol. 20: 598–604.

    Google Scholar 

  • Rowe, G. T., C. H. Clifford, K. L. Smith & P. L. Hamilton, 1975. Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature 255: 215–217.

    Article  CAS  Google Scholar 

  • Sain, P., J. B. Robinson, W. N. Stammers, N. K. Kaushik & H. R. Whiteley, 1977. A laboratory study on the role of stream sediment in nitrogen loss from water. J. envir. Qual. 6: 274–278.

    Article  CAS  Google Scholar 

  • Sumner, W. T. & S. G. Fisher, 1979. Periphyton production in Fort River, Massachusetts. Freshwat. Biol. 9: 205–212.

    Article  Google Scholar 

  • Teal, J. M. & J. Kanwisher, 1961. Gas exchange in a Georgia salt marsh. Limnol. Oceanogr. 6: 388–399.

    Article  Google Scholar 

  • Tett, P., M. G. Kelly & G. M. Hornberger, 1977. Estimation of chlorophyll a and phaeophytin a in methanol. Limnol. Oceanogr. 22: 579–580.

    CAS  Google Scholar 

  • Thomsen, B. W. & H. H. Schumann, 1968. The Sycamore Creek watershed, Maricopa County, Arizona. U.S. Geol. Surv. Wat. Suppl. Pap. 1861.

  • Triska, F. J., J. R. Sedell & B. Buckley, 1975. The processing of conifer and hardwood leaves in two coniferous forest streams: II. Biochemical and nutrient changes. Verb. int. Ver. Limnol. 19: 1628–1639.

    Google Scholar 

  • Van Kessel, J. F., 1977. Factors affecting the denitrification rate in two sediment-water systems. Wat. Res. 11: 259–267.

    Article  Google Scholar 

  • Vaux, W. G., 1962. Interchange of stream and intragravel water in a salmon spawning riffle. U.S. Fish Wildl. Serv. Spec. sci. Rep.-Fish. No. 405.

  • Vaux, W. F., 1968. Intragravel flow and interchange of water in a streambed. U.S. Fish Wildl. Serv. Fish. Bull 66: 479–489.

    Google Scholar 

  • Wood, E. D., F. A. J. Armstrong & F. A. Richards, 1967. Determination of nitrate in seawater by cadmium-copper reduction to nitrite. J. mar. biol. Assoc. U.K. 47: 23–31.

    Article  CAS  Google Scholar 

  • Woods, P. F., 1980. Dissolved oxygen in intragravel water of three tributaries to Redwood Creek, Humboldt County, California. Wat. Resour. Bull. 16: 105–111.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, N.B., Fisher, S.G. Exchange between interstitial and surface water: Implications for stream metabolism and nutrient cycling. Hydrobiologia 111, 219–228 (1984). https://doi.org/10.1007/BF00007202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007202

Keywords

Navigation