Skip to main content
Log in

Drainage history and land use pattern of a Swedish river system — their importance for understanding nitrogen and phosphorus load

  • Patch/ecotone pattern in watershed, lake-river systems
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

During the 19th and the first half of the 20th century, approximately 300 km2 of lakes and wetlands, representing 29% of the River Kavlingean catchment in Southern Sweden, were drained to make land available for agriculture. Published accounts of nutrient loads from the catchment indicated that until the mid 20th century, factories and urban point sources were the major contributors of both nitrogen and phosphorus. By the middle of the 20th century, the construction of sewage treatment plants had effectively reduced phosphorus pollution. Concurrently, the land drained in the previous century underwent a more intense cultivation, with productivity being maintained by commercial fertilizers. Subsequently, net nutrient loads from agriculture continued to increase, reaching an annual load of 2652 tons total-nitrogen and 70 tons total-phosphorus for the River Kävlingeån. Whilst high nutrient leakage from agricultural watersheds may be a problem which is only recently recognized, it had its origins in nearly a hundred years of commonly accepted agricultural policy.

To assess the importance of agriculture as the major source of nutrients to the River Kävlingeån system, three tributary catchment areas, differing in terms of their land use patterns (high, medium and low intensity of agricultural use), were studied and compared with literature figures. Results indicated that agricultural nutrient loss areal coefficients were substantially higher than the literature figures, demonstrating the role of agriculture as source of nutrients to the River Kävlingeån system. The agricultural land use policies of the last fifty years were revealed to be most important with regard to this role. Of such land use policies, the cultivation of the last 10–15% of land employed for agricultural use (primarily riparian ecotones) may be of most significance. The literature indicates that intense agricultural use of this final 10–15% may account for a ca. 50% increase in nitrogen loss. This suggests that one solution to the problem of agricultural diffuse pollution may lie in the restoration and sustainable management of riparian ecotones of agricultural streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahl, T. & S. Odén, 1975. Nutrient sources — an overview. In Miljövårdssekretariatet (ed.), Eutrophication — 10th Nordic Symposium on Water Research. Nordforsk, Helsinki: 99–133.

  • Alström, K. & A. Bergman, 1988. Sediment and nutrient losses by water erosion from arable land in South Sweden. A problem with nonpoint pollution? Vatten 44: 193–204.

    Google Scholar 

  • Andersson, R., 1981. Växtnäringsförluster från åkermark, kunskapsöversikt. In Naturvårdsverket (ed.), Hydrologi, Markanvändning, Vattenkvalitet. Rapport SNV PM 1455: 85–103.

  • Arnesson, S. I. & K. Elwér, 1987. Förslag till åtgärder för att minska den svenska föroreningsbelastningen på Öresund. Naturvårdsverket Rapport 3315, Länsstyrelsen i Malmö-hus län: 56 pp.

  • Berggren, H., 1986. Belastnings- och transportberäkningar. Föredrag vid FVH-möte i Halmstad, FVH-publikation 1986, 4: 23–26.

  • Brink, N., 1982. Närsalter och organiska ämnen från åker och skog. Ekohydrologi 14, Avdelningen för Vattenvård, SLU, Ultuna: 21–30.

    Google Scholar 

  • Brink, N. & A. Gustafson, 1970. Nitrogen and phosphorus from forests, fields and cities. Vattenvård 1. Lantbrukshögskolan Uppsala: 108 pp.

    Google Scholar 

  • Cooper, J. R., J. W. Gilliam, R. B. Daniels & W. P. Robarge, 1987. Riparian areas as filters for agricultural sediment. J. Soil. Sci. Soc. Am. 51: 416–421.

    Google Scholar 

  • Emanuelsson, U. & J. Möller, 1990. Flooding in Scania: a method to overcome deficiency nutrients in agriculture during the 19th century. The Agricultural History Review 38, Part 2: 127–148.

    Google Scholar 

  • Emanuelsson, U., C. Bergendorff, B. Carlsson, N. Lewan & O. Nordell, 1985. Det skånska kulturlandskapet. Signum, Lund: 248 pp.

    Google Scholar 

  • Greenland, D. J., 1977. Soil damage by intensive cultivation: temporary or permanent? Phil. Trans. r. Soc. London. Ser. B 281: 193–208.

    Google Scholar 

  • Groffman, P. M., G. J. House, P. F. Hendrix, D. E. Scott & D. A. Crossley Jr., 1986. Nitrogen cycling as affected by interactions of components in a Georgia Piedmont agroecosystem. Ecology 67: 80–87.

    Google Scholar 

  • Gustavsson, A. S., 1985. Förluster av kväve och fosfor runt Ringsjön. Ekohydrologi 19, Avdelningen för Vattenvård, SLU, Ultuna: 36–43.

    Google Scholar 

  • Ihse, M., 1985. Försvinnande biotoper i jordbrukslandskapet. Jämförande studie i flygbilder från 1940-talet till nutid i Ystadsområdet. In G. Regnell (ed.), Kulturlandskapet - dess framväxt och förändring. Växtekologiska institutionen, Lunds Universitet: 101–108.

  • Isenhart, T. M. & W. G. Crumpton, 1989. Transformation and loss of nitrate in an agricultural stream. J. freshw. Ecol. 5: 123–129.

    Google Scholar 

  • Jeffries, M. & D. Mills, 1990. Freshwater Ecology — Principles and Applications. Belhaven Press, London & New York: 285 pp.

    Google Scholar 

  • Joelsson, A. & A. Eha, 1983. Närsaltbidraget till vattendrag och kustvatten i Malmöhus län. Vatten 39: 286–295.

    Google Scholar 

  • José, P., 1989. Long term nitrate trends in the river Trent and four major tributaries. Regulated Rivers, Research and Management 4: 43–57.

    Google Scholar 

  • Karr, J. R. & I. J. Schlosser, 1978. Water resources and the land-water interface. Science 201: 229–234.

    Google Scholar 

  • Kindblom, L., 1970. Sjösanknings- och torrläggningsföretag. In G. Wejman-Hane, L. Kindblom & A. Almestrand (eds), Vattenvårdsplan för Kävlingeån. KWPA, Malmö: 1–7.

    Google Scholar 

  • Kävlingeåns Water Protection Association (KWPA), 1991. Sammanfattad vattendragskontroll för Kävlingeån. Käv-lingeåns vattenvårdsförbund, Malmö: 47 pp.

    Google Scholar 

  • Larsson, U., R. Elmgren & F. Wulff, 1985. Eutrophication and the baltic sea: causes and consequences. Ambio 14: 9–14.

    Google Scholar 

  • Longabucco, P. & M. R. Rafferty, 1989. Delivery of nonpointsource phosphorus from cultivated mucklands to Lake Ontario. J. envir. Qual. 18: 157–163.

    Google Scholar 

  • Lowrance, R. R., R. T. Todd, J. Fail Jr., O. Hendrickson, Jr., R. Leonard & L. E. Asmussen, 1984. Riparian forests as nutrient filters in agricultural watersheds. BioScience 34: 374–377.

    Google Scholar 

  • Lundegårdh, P. H., J. Lundqvist & M. Lindström, 1964. Berg och Jord i Sverige. Almqvist & Wiksell, Stockholm: 349 pp.

    Google Scholar 

  • McCarthy, D. T., 1983. The impact of arterial drainage on fish stocks in the Trimblestone river. In C. Moriarty (ed.), Advances in Fish Biology in Ireland. Irish Fisheries Investigations, Series A 23: 16–19.

  • Mitsch, W. J. & J. G. Gosselink, 1986. Wetlands. Van Nostrand Reinhold Company, New York: 539 pp.

    Google Scholar 

  • Neill, M., 1989. Nitrate concentrations in river waters in the South-East of Ireland and their relationship with agricultural practice. War. Res. 23: 1339–1355.

    Google Scholar 

  • Ogawa, H. & J. W. Male, 1983. The flood mitigation potential of inland wetlands. Water resources Research Center Publication No. 138, University of Massachusetts, Amherst: 164 pp.

    Google Scholar 

  • Ongley, E. D., 1982. The PLUARG experience: scientific implications for diffuse sources management. In: B. T. Hart (ed.), Water quality management. Monitoring programs and diffuse runoff. Water Studies Centre Chisholm Institute of Technology and Australian Society for Limnology, Melbourne: 87–101.

    Google Scholar 

  • Pedrozo, F. & C. Bonetto, 1989. Influence of river regulation on nitrogen and phosphorus mass transport in a large South American river. Regulated Rivers, Research and Management 4: 59–70.

    Google Scholar 

  • Persson, Å., 1976. Risbygd - Skogsbygd, vegetation och landskapsförändringar i Hörbytrakten. Skånes Natur Årsbok: 41–53.

  • Peterjohn W. T. & D. L. Correll, 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65: 1466–1475.

    Google Scholar 

  • Petersen, R. C. Jr., L.B-M. Petersen & J. O. Lacoursière, 1991. A building block model for stream restoration. In P. Boon, G. Petts & P. Calow (eds), The conservation and management of rivers. J. Wiley & Sons, N.Y. (In Press).

    Google Scholar 

  • Petersen, R. C. Jr., B. L. Madsen, M. A. Wilzbach, C. H. D. Magadza, A. Paarlberg, A. Kullberg & K. W. Cummins, 1987. Stream management: emerging global similarities. Ambio 16: 166–179.

    Google Scholar 

  • Pinay, G. & H. Decamps, 1988. The role of riparian woods in regulating nitrogen fluxes between the alluvial aquifer and surface water: a conceptual model. Regulated Rivers, Research and Management 2: 507–516.

    Google Scholar 

  • Riksdagen, 1988a. Mijöpolitiken inför 90-talet. Proposition 1987/88: 85, Stockholm, 501 pp.

  • Riksdagen, 1988b. Om miljöförbättrande åtgårder i jordbruket m m. Proposition 1987/88: 128, Stockholm: 353 pp.

  • Risser, P. G., 1990. The ecological importance of land-water ecotones. In R. J. Naiman & H. Decamps (eds), The Ecology and Management of Aquatic-Terrestrial Ecotones. Man and the Biosphere series 4: 7–21.

  • Rosenberg, R., 1986. Eutrofieringsläget i kattegatt. National Swedish Environmental Protection Board. Report 3272, 150 pp.

  • Rosswall, T. & K. Paustian, 1984. Cycling of nitrogen in modern agricultural systems. Plant a. Soil 76: 3–21.

    Google Scholar 

  • Sampl, H., 1986. Einfluss von Nährstoffabschwemmung und Bodenerosion auf die Gewässereutrophierung. Wasserwirtschaft Wasservorsorge. Bundesministerium für Land- und Forstwirtschaft, Wien: 33 pp.

    Google Scholar 

  • Sondén, K., 1914. Anteckningar rörande svenska vattendrag: Kjevlingeån. P. A. Norstedt & Söner, Stockholm: 33–48.

    Google Scholar 

  • Statistiska Centralbyrån, 1987. Lantbruksräkningen. SCB, Stockholm: 98 pp.

    Google Scholar 

  • Swedish Meteorological and Hydrological Institute (SMHI), 1990. Klimatsammanställning Station M518 Lund och Medelvattenföring pegel 92–2126 Ellinge. SMHI, Stockholm, 2 pp.

    Google Scholar 

  • Ulén, B., 1986. Fosforerosion vid vallodling och skyddszon med gräs. Ekohydrologi 20, Avdelningen för Vattenvård, SLU, Ultuna: 23–28.

    Google Scholar 

  • Wejman-Hande, G., L. Kindblom & A. Almestrand, 1970. Vattenvårsplan för Kävlingeån. KWPA, Malmö: 105 pp.

    Google Scholar 

  • Wiklander, L., 1970. Leaching of nutrients. Grundförbättring 23: 3–4.

    Google Scholar 

  • Wiklander, L. & G. Hallgren, 1982. Leaching of nutrients 3. Grundförbättring 24: 3–4.

    Google Scholar 

  • Wolf, P., 1960. Land drainage and its dangers as experienced in Sweden. John Sherratt & Son, Altrincham, Great Britain: 73 pp.

    Google Scholar 

  • Wulff, F., G. AErtebjerg, G. Nicolaus, A. Niemi, P. Ciszewski, S. Schulz & W. Kaiser, 1986. The changing pelagic ecosystem of the Baltic Sea. Ophelia, Suppl. 4: 299–319.

    Google Scholar 

  • Yates, P. & J. M. Sheridan, 1983. Estimating the effectiveness of vegetated floodplains/wetlands as nitrate-nitrite and orthophosphorus filters. Agric, Ecosystem and Environment 9: 303–314.

    Google Scholar 

  • Zachrisson, A., 1914. Nyodling, torrläggning och bevattning i Skrane. Skrifter utgivna av de skånska hushållningssäll-skapen med anledning av deras hundraårsjubileum. Gleerups, Lund: 32 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krug, A. Drainage history and land use pattern of a Swedish river system — their importance for understanding nitrogen and phosphorus load. Hydrobiologia 251, 285–296 (1993). https://doi.org/10.1007/BF00007188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007188

Key words

Navigation