Skip to main content
Log in

Storage and dynamics of organic matter in different springs of small floodplain streams

  • Groundwater-surface water ecotones, air-water interface
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The flow of groundwater through the sediment layer (underflow or hyporheic zone) of streams and at the origin of streams can influence organic matter uptake dynamics of floodplain. The River Rhône floodplain has limestone foothills. Here we studied 2 karstic and 2 interstitial springs differing by aquifer geology. Organic matter, physico-chemical conditions were compared between these springs during two seasons (from March to September 1989) and at different depths (0, −20 cm, −40 cm).

Temperatures indicated large differences in underflow between springs, in their relation to the surrounding environment, and between seasons. Springs are well oxygenated, with differences between layers. Cultivated fields supply interstitial springs with nitrates, and pools are nutrient traps. DOC was heterogeneous in space and time and correlates with VFPOC. Particulate nutrients were correlated with available surface area of sediment grains. Physical conditions of each spring were prominent in determining storage and turnover of organic matter. Each spring, by its own characteristics and dynamics regulating stability and turnover, had an effect or control on storage, transport and retention of organic matter (quality, quantity). These springs offer an example of the heterogeneity, and give a view of the diversity of patches within a floodplain. The data suggest that groundwater flow of springs may be a major factor in the functioning of floodplain tributaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartodzej, W. & J. A. Perry, 1990. Litter processing in diffuse and conduit springs. Hydrobiologia 206: 87–97.

    Google Scholar 

  • Bou, C., 1974. Recherches sur les eaux souterraines. 25. Méthodes de récolte dans les eaux souterraines interstitielles. Ann. Spéléol. 29: 611–619.

    Google Scholar 

  • Bon, C. & R. Rouch, 1967. Un nouveau champ de recherches sur la faune aquatique souterraine. C. R. Acad. Sci. Paris, 265: 369–370.

    Google Scholar 

  • Chafiq, M., J. Gibert, P. Marmonier, M. J. Olivier & J. Juget, 1992. Spring ecotone and gradient study of interstitial fauna in two tributaries along a transversal floodplain profile. Regulated Rivers 7: 103–115.

    Google Scholar 

  • Chardon, M., 1989. Les karsts de l'avant-pays alpin au nord des Alpes occidentales fraçaises: le creusement glaciaire des réseaux souterrains. Karstologia 13: 21–32.

    Google Scholar 

  • Crocker, M. T. & J. L. Meyer, 1987. Interstitial dissolved organic carbon in sediments of a southern Appalachian headwater stream. J. N. Am. Benthol. Soc. 6: 159–167.

    Google Scholar 

  • Cuffney, T. F., 1988. Input, movement and exchange of organic matter within a subtropical coastal blackwater river-floodplain system. Fresh. Biol. 19: 305–320.

    Google Scholar 

  • Cummins, K. W., J. R. Sedell, F. J. Swanson, G. W. Minshall, S. G. Fisher, C. E. Cushing, R. C. Petersen & R. L. Vannote, 1983. Organic matter budgets for stream ecosystems: problems in their evaluation in J. R. Barnes & G. W. Minshall(eds), Stream Ecology. Plenum Press, New York: 299–354.

    Google Scholar 

  • Egglishaw, H. J., 1972. An experimental study of breakdown of cellulose in fast flowing streams. Mem. Ist. ital. Idrobiol. 29 suppl: 405–428.

    Google Scholar 

  • Elwood, J. W., J. D. Newbold & A. F. Tremble, 1981. The limiting role of phosphorus in a wood land stream ecosystem: Effects of P enrichment on leaf decomposition and primary producers. Ecology 62: 146–158.

    Google Scholar 

  • Enay, R., 1980. Crémieu: évolution morphologique et structurale. Bull. Mens. Soc. Linéénne de Lyon 8: 482–505.

    Google Scholar 

  • Enay, R., 1981. Les formations glaciaires et les stades de retrait du glacier würmien dans l'Ile Crémieu. Bull. Mens. Soc. Linéénne de Lyon 1: 5–27.

    Google Scholar 

  • Fisher, S. G. & G. W. Likens, 1973. Energy flow in Bear Brook, New Hampshire: an intergrative approach to stream ecosystem metabolism. Ecol. Monogr. 43: 421–439.

    Google Scholar 

  • Ford, T. E. & R. J. Naiman, 1989. Groundwater-surface water relationships in boreal forest watersheds: dissolved organic carbon and inorganic nutrient dynamics. Can. J. Fish. aquat. Sci 46: 41–49.

    Google Scholar 

  • Gibert, J., 1986. Ecologie d'un systéme karstique jurassien. Hydrogéologie, dérive animale, transits de matiéres, dynamique de la population de Niphargus (Crustacé Amphipode). Mém. Biospéol, XIII, 40: 379 pp.

  • Golterman, H. L., R. S. Clymo & M. A. N. Ohnstad, 1978. Methods for physical and chemical analysis of fresh waters. I.B.P. Handbook, Blackwell Scientific Publications, sd ed., 213 pp.

  • Grimm, N. B., S. G. Fischer, 1984. ‘Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling’. Hydrobiologia 111: 219–228.

    Google Scholar 

  • Hargrave, B. T., 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnol. Oceanogr. 17: 583–596.

    Google Scholar 

  • Herbst, G. N., 1980. Effects of buried on food value and consumption of leaf detritus by aquatic invertebrates in a lowland forest stream. Oïkos 35: 411–424.

    Google Scholar 

  • Hynes, H. B. N., 1975. The stream and its valley. Verh. int. Ver. Limnol. 19: 1–15.

    Google Scholar 

  • Hynes, H. B. N., 1983. Groundwater and stream ecology. Hydrobiologia 100: 93–99.

    Google Scholar 

  • Hynes, H. B. N. & N. K. Kaushik, 1969. The relationship between dissolved nutrient salts and protein production in submerged autumnal leaves. Verh. int. Ver. Limnol. 17: 95–103.

    Google Scholar 

  • Iversen, T. M., 1975. Disappearance of autumn shed beech leaves placed in bags in small streams. Verh. int. Ver. Limnol. 19: 1687–1692.

    Google Scholar 

  • Kaushik, N. K. & H. B. N. Hynes, 1971. The role of the dead leaves that fall into streams. Arch. Hydrobiol. 72: 305–312.

    Google Scholar 

  • Leichtfried, M., 1985. Organic matter in gravel streams (Project Ritrodat-Lunz). Verh. int. Ver. 22: 2058–2062.

    Google Scholar 

  • Lock, M. A. & H. B. N. Hynes, 1976. The fate of dissolved organic carbon derived from autumn-shed maple leaves (Acer saccharum) in a temperate headwater stream. Limnol. Oceanogr. 21: 436–443.

    Google Scholar 

  • Lock, M. A., R. R. Wallace, J. W. Costerton, R. M. Ventullo & S. E. Charlton, 1984. River epilithon: Toward a structural-functional model; Oïkos 42: 10–22.

    Google Scholar 

  • Lush, D. L. & H. B. N. Hynes, 1978a. Particulate and dissolved organic matter in a small partly forested stream. Hydrobiologia 60: 271–275.

    Google Scholar 

  • Lush, D. L. & H. B. N. Hynes, 1978b. The uptake of dissolved organic matter by a small spring stream. Hydrobiologia 60: 271–275.

    Google Scholar 

  • Mathieu, J., K. Essafi & S. Doledec, 1992. Dynamics of particulate organic matter in bed sediments of two karst streams. Archiv. Hydrobiol 128: 199–211.

    Google Scholar 

  • Mayack, D. T., J. H. Thorp & M. Corthran, 1989. Effects of burial and floodplain retention on stream processing of allochtonous litter. Oïkos 54: 378–388.

    Google Scholar 

  • Meyer, J. L., W. H. McDowell, T. L. Bott, J. W. Elwood, C. Ishizaki, J. M. Melack, B. L. Peckarsky, B. J. Peterson & P. A. Rubee, 1988. Elemental dynamics in streams. J. N. Am Benthol Soc. 7: 410–432.

    Google Scholar 

  • Minshall, G. W., 1988. Stream ecosystem theory: a global perspective. J. N. Am. Benthol. Soc. 7: 263–288.

    Google Scholar 

  • Mickleburgh, S., M. A. Lock & T. E. Ford, 1984. Spatial uptake of dissolved organic carbon in river beds. Hydrobiologia 108: 115–119.

    Google Scholar 

  • Munn, N. L. & J. L. Meyer, 1988. Rapid flow through the sediments of a headwater stream in the southern Appalachians. Freshwat. Biol. 20: 235–240.

    Google Scholar 

  • Naiman, R. J. & J. R. Sedell, 1972. Benthic organic matter as a function of stream order in Oregon. Arch. Hydrobiol. 87: 404–422.

    Google Scholar 

  • Newbold, J. D., P. J. Mulholland, J. W. Elwood & R. V. O'Neill, 1982. Organic carbon spiralling in stream ecosystems. Oïkos 38: 266–272.

    Google Scholar 

  • Newbold, J. D., J. W. Elwood, R. V. O'Neill & A. L. Sheldon, 1983. Phosphorus dynamics in a woodland stream ecosystem: A study of nutrient spiralling. Ecology 64: 1249–1265.

    Google Scholar 

  • Peterjohn, W. T. & D. L. Correll, 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65: 1466–1475.

    Google Scholar 

  • Pinay, G. & H. Decamps, 1988. The role of riparian woods in regulating nitrogen fluxes between the alluvial aquifer and surface water: a conceptual model. Regulated Rivers 2: 507–516.

    Google Scholar 

  • Rutherford, J. E. & H. B. N. Hynes, 1987. Dissolved organic carbon in streams and groundwater. Hydrobiologia 154: 33–48.

    Google Scholar 

  • Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989. Retention and transport of nutrients in a third-order in northwestern california: hyporheic processes. Ecology 70: 1893–1905.

    Google Scholar 

  • Yates, P. & J. M. Sheridan, 1983. Estimating the effectiveness of vegetated floodplain: wetlands as nitrate-nitrite and orthophosphorous filters. Agricultural Ecosystems and Environment 9: 303–314.

    Google Scholar 

  • Verry, E. S. & D. R. Timmons, 1982. Waterborne nutrient flow through an upland — Peatland watershed in Minnesota. Ecology 63: 1456–1467.

    Google Scholar 

  • Wallis, P. M., H. B. N. Hynes & S. A. Telang, 1981. The importance of groundwater in the transportation of allochtonous dissolved organic matter to the streams draining a small mountain basin. Hydrobiologia 79: 77–90.

    Google Scholar 

  • White, D. S., C. H. Elzinga & S. P. Hendricks, 1987. Temperature patterns within the hyporheic zone of a northern Michigan river. J. N. Am. Benthol. Soc. 6: 85–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chafiq, M., Gibert, J. Storage and dynamics of organic matter in different springs of small floodplain streams. Hydrobiologia 251, 199–209 (1993). https://doi.org/10.1007/BF00007179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007179

Key words

Navigation