Skip to main content
Log in

Impacts of environmental changes on the biogeochemistry of aquatic humic substances

  • Origin and nature of DOM in lakes
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Humic substances (HS) are the main constituent of the organic carbon pool in stained aquatic ecosystems. HS absorb visible and ultraviolet (UV) light, have acid-base properties and metal and nutrient binding abilities. Based on these characteristics, UV irradiation, pH and the trophic status of aquatic ecosystems will influence the impact of HS on element cycling in surface waters. With climatic change and environmental pollution, UV irradiance, acidification and eutrophication may increase further. In this paper impacts of UV irradiation, pH and eutrophication on the structure, properties and biodegradation of aquatic HS are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, G. R., D. M. McKnight, R. L. Wershaw & P. MacCarthy, 1985. Humic substances in soil, sediment, and water. Geochemistry, isolation, and characterization. J. Wiley & Sons, N.Y., 692 pp.

    Google Scholar 

  • Bowles, E. C., R. C. Antweiler & P. MacCarthy, 1989. Acidbase titration and hydrolysis of fulvic acid from the Suwannee River. In R. C. Averett, J. A. Leenheer, D. M. McKnight & K. A. Thorn (eds.), Humic substances in the Suwannee River, Georgia: Interactions, properties, and proposed structures. U.S. Geological Survey, Denver, Colorado. Open File Report 87–557: 205–229.

    Google Scholar 

  • Brezonik, P. L. & C. J. Miles, 1981. Oxygen consumption in humic-colored waters by a photo-chemical ferrous-ferric catalytic cycle. Envir. Sci. Technol. 15: 1089–1095.

    Article  Google Scholar 

  • Cabaniss, S. E. & F. M. M. Morel, 1989. Comment on ‘A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids)’. Envir. Sci. Technol. 23: 746–747.

    Article  CAS  Google Scholar 

  • Carmichael, W. W., C. L. A. Jones, N. A. Mahmood & W. C. Theiss, 1985. Algal toxins and water-based diseases. CRC Crit. Rev. envir. Cont. 15: 275–313.

    CAS  Google Scholar 

  • Christman, R. F. & E. T. Gjessing, 1983. Aquatic and terrestrial humic materials. Ann Arbor Science, Ann Arbor, Michigan, 538 pp.

    Google Scholar 

  • De Haan, H., 1977. Effect of benzoate on microbial decomposition of fulvic acids in Tjeukemeer (The Netherlands). Limnol. Oceanogr. 22: 38–44.

    Google Scholar 

  • De Haan, H., G. Werlemark & T. De Boer, 1983. Effect of pH on molecular weight and size of fulvic acids in drainage water from peaty grassland in NW Netherlands. Plant Soil 75: 63–73.

    Article  Google Scholar 

  • De Haan, H., R. I. Jones & K. Salonen, 1990. Abiotic transformations of iron and phosphate in humic lake water revealed by double isotope labeling and gel filtration. Limnol. Oceanogr. 35: 491–497.

    Google Scholar 

  • De Haan, H., T. De Boer, J. Voerman, H. A. Kramer & O. F. R. Van Tongeren, 1990a. Size class distribution of dissolved (200 nm) nutrients and essential metals in shallow, eutrophic and humic lakes. Verb. int. Ver. Limnol. 24: 298–301.

    Google Scholar 

  • Ephraim, J., S. Alegret, A. Mathuthu, M. Bicking, R. L. Malcohn & J. A. Marinsky, 1986. A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 2. Influence of polyelectrolyte properties and functional group heterogeneity on the protonation equilibria of fulvic acid. Envir. Sci. Technol. 20: 354–366.

    Article  CAS  Google Scholar 

  • Francko, D. A., 1986. Epilimnetic phosphorus cycling: influence of humic materials and iron on coexisting major mechanisms. Can. J. Fish. aquat. Sci. 43: 302–310.

    Article  CAS  Google Scholar 

  • Francko, D. A., 1990. Alteration of bioavailability and toxicity by phototransformation of organic acids. In E. M. Perdue & E. T. Gjessing (eds), Organic acids in aquatic ecosystems. John Wiley & Sons, N.Y.: 167–177.

    Google Scholar 

  • Francko, D. M. & R. T. Heath, 1979. Functional distinct classes of complex phosphorus compounds in lake water. Limnol. Oceanogr. 24: 463–473.

    CAS  Google Scholar 

  • Francko, D. M. & R. T. Heath, 1982. UV-sensitive complex phosphorus: association with dissolved humic material and iron in a bog lake. Limnol. Oceanogr. 27: 564–569.

    CAS  Google Scholar 

  • Francko, D. M. & R. T. Heath, 1983. Abiotic uptake and photodependent release of phosphate from high-molecular weight humic-iron complexes in a bog lake. In R. F. Christman & E. T. Gjessing (eds), Aquatic and terrestrial humic materials. Ann Arbor Science, Ann Arbor, Michigan: 467–480.

    Google Scholar 

  • Francois, R., 1987. A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis. Geochim. Cosmochim. Acta 51: 17–27.

    Article  CAS  Google Scholar 

  • Frimmel, F. H., 1990. Characterization of organic acids in freshwater: a current status and limitations. In E. M. Perdue & E. T. Gjessing (eds), Organic acids in aquatic ecosystems. John Wiley & Sons, N.Y.: 5–23.

    Google Scholar 

  • Frimmel, F. H. & R. F. Christman, 1988. Humic substances and their role in the environment. John Wiley & Sons, N.Y.

    Google Scholar 

  • Geller, A., 1986. Comparison of mechanisms enhancing biodegradability of refractory lake water constituents. Limnol. Oceanogr. 31: 755–764.

    Article  CAS  Google Scholar 

  • Gjessing, E. T., 1990. Mechanisms and effects of reactions of organic acids with anions. In E. M. Perdue & E. T. Gjessing (eds), Organic acids in aquatic ecosystems. John Wiley & Sons, N.Y.: 179–187.

    Google Scholar 

  • Gjessing, E. T., M. Grande & E. Røgeberg, 1988. Natural organic acids: their role in freshwater acidification and aluminium speciation. Acid rain research report 15/1988. Norwegian Institute for Water Research, Oslo.

    Google Scholar 

  • Horvath, R. S., 1972. Microbial co-metabolism and the degradation of organic compounds in nature. Bact. Rev. 36: 146–155.

    PubMed  CAS  Google Scholar 

  • Jones, R. I., K. Salonen & H. De Haan, 1988. Phosphorus transformations in the epilimnion of humic lakes: abiotic interactions between dissolved humic material and phosphate. Freshwat. Biol. 19: 357–369.

    Article  CAS  Google Scholar 

  • Kieber, D. J., J. McDaniel & K. Mopper, 1989. Photochemical source of biological substrates in sea water: implications for carbon cycling. Nature 341: 637–639.

    Article  CAS  Google Scholar 

  • Marinsky, J. A. & J. Ephraim, 1986. A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 1. Analysis of the influence of polyelectrolyte properties on protonation equilibria in ionic media: Fundamental concepts. Envir. Sci. Technol. 20: 349–354.

    Article  CAS  Google Scholar 

  • Perdue, E. M., 1985. Acidic functional groups in humic substances. In G. R. Aiken, D. M. McKnight, R. L. Wershaw & P. MacCarthy (eds), Humic substances in soil, sediment, and water: Geochemistry, isolation, and characterization. John Wiley & Sons, N.Y.: 493–526.

    Google Scholar 

  • Perdue, E. M., 1990. Modeling the acid-base chemistry of organic acids in laboratory experiments and in freshwaters. In E. M Perdue & E. T. Gjessing (eds), Organic acids in aquatic ecosystems. John Wiley & Sons, N.Y.: 111–126.

    Google Scholar 

  • Petersen, R. C., Jr., 1990. Effects of ecosystem changes (e.g., acid status) on formation and biotransformation of organic acids. In E. M. Perdue & E. T. Gjessing (eds), Organic acids in aquatic ecosystems. John Wiley & Sons, N.Y.: 151–166.

    Google Scholar 

  • Petersen, R. C., Jr. & A. Kullberg, 1985. The octanol/waterpartition coefficient of humic material and its dependence on hydrogen ion activity. Vatten 41: 236–239.

    Google Scholar 

  • Petersen, R. C., Jr. & U. Persson, 1987. Comparison of the biological effects of humic materials under acidified conditions. Sci. Total. envir. 62: 387–398.

    Article  CAS  Google Scholar 

  • Rifai, N. & G. Bertru, 1980. La biodegradation des acidesfulviques. Hydrobiologia 75: 181–184.

    Article  CAS  Google Scholar 

  • Ryhänen, R., 1968. Die Bedeutung der Humussubstanzen in Stoflhaushalt der Gewasser Finnlands. Mitt. int. Ver. Limnol. 14: 168–178.

    Google Scholar 

  • Schnitzer, M. & S. U. Khan, 1972. Humic substances in the environment, M. Dekker, N.Y., 327 pp.

    Google Scholar 

  • Shuman, M. S., 1990. Carboxyl acidity of aquatic organic matter: possible systematic errors introduced by XAD extraction. In E. M. Perdue & E. T. Gjessing (eds), Organic acids in aquatic ecosystems. John Wiley & Sons, N.Y.: 97–109.

    Google Scholar 

  • Sojo, L. E. & H. De Haan, 1991. Multicomponent kinetic analysis of iron speciation in Lake Tjeukemeer: comparison with iron speciation in fulvic acid solutions extracted from a peaty polder near Lake Tjeukemeer. Envir. Sci. Technol. 25: 935–939.

    Article  CAS  Google Scholar 

  • Sposito, G., 1986. Sorption of trace metals by humic materials in soils and natural waters. CRC Crit. Rev. envir. Cont. 16: 193–229.

    Article  CAS  Google Scholar 

  • Stabel, H. H., K. Moaledj & J. Overbeck, 1979. On the degradation of dissolved organic molecules from Plusssee by oligocarbophilic bacteria. Arch. Hydrobiol. Beih. Ergebn. Limnol. 12: 95–104.

    CAS  Google Scholar 

  • Steinberg, C. E. W., 1990. Alteration of organic substances during eutrophication and effect of the modified organic substances on trophic interactions. In E. M. Perdue & E. T. Gjessing (eds), Organic acids in aquatic ecosystems. John Wiley & Sons, N.Y.: 189–208.

    Google Scholar 

  • Steinberg, C. E. W. & A. Herrmann, 1981. Utilization of dissolved metal organic compounds by freshwater microorganisms. Verh. int. Ver. Limnol. 21: 231–235.

    CAS  Google Scholar 

  • Steinberg, C. E. W. & U. Muenster, 1985. Geochemistry and ecological role of humic substances in lakewater. In G. R. Aiken, D. M. McKnight, R. I. Wershaw & P. MacCarthy (eds), Humic substances in soil, sediment, and water. Geochemistry, isolation, and characterization. John Wiley & Sons, N.Y.: 105–145.

    Google Scholar 

  • Strome, D. J. & M. C. Miller, 1978. Photolytic changes in dissolved humic substances. Verh. int. Ver. Limnol. 20: 1248–1254.

    Google Scholar 

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1989. Bacterioplankton in humic lakes. A link between allochthonous organic matter and pelagic food webs. Ph.D. Thesis, Lund University, Lund, 104 pp.

    Google Scholar 

  • Zika, R. G. & W. J. Cooper, 1987. Photochemistry of environmental aquatic systems. Am. Chemical Soc., Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Haan, H. Impacts of environmental changes on the biogeochemistry of aquatic humic substances. Hydrobiologia 229, 59–71 (1992). https://doi.org/10.1007/BF00006991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006991

Key words

Navigation