World subterranean ostracod biogeography: dispersal or vicariance

Abstract

Origins of the present day distribution of several freshwater and marine phyletic groups of ostracods are described using both Recent and fossil data. Six examples of subterranean ostracods distributed world-wide are discussed. The first two examples (i.e. the Candoninae Namibcypridini and the Sphaeromicolinae) seemed, in a first approach, to fit well with the ‘vicariance model’ but a detailed study demonstrate that their present day distribution can not be seen as a consequence of any geological events. The four other examples (the Xestoleberis arcturi species group, the Tuberoloxoconcha, the Cavernocypris and Fabaeformiscandona wegelini) fit well with the ‘dispersionist model’. We propose a biogeographical model similar to the dispersal one which foccus on the ecological processes occurring at local and/or regional scales. Some present day species or their epigean ancestors may originally have been more widely dispersed. These species were predisposed to colonize subsurface habitats; a process that could occur polytopically and at various times. It is the degree of ecological flexibility, the width of ecological tolerance, the type of preadaptations, and the capacity to perceive and successfully invade new environments that allow subsurface ostracods to migrate actively or be dispersed passively through both subterranean and epigean aquatic systems and to settle in new places. But no centers of origin and direction of dispersal can be identified in our data. There is little known about the autecology of subterranean ostracod taxa with broad geographical ranges. Samples should be collected at fine (habitat) and broad scales (regional surveys) so that we can better understand the modes of ostracod dispersal across a range of spatial scales.

This is a preview of subscription content, log in to check access.

References

  1. Banarescu, P., 1990. Zoogeography of fresh waters. Vol. 1. Aula, Wiesbaden, 511 pp.

    Google Scholar 

  2. Boulton, A. J., S. E. Stibbe, N. B. Grimm & S. G. Fisher, 1991. Invertebrate recolonisation of small patches of defaunated hyporheic sediments in a Sonoran desert stream. Freshwat. Biol. 26: 267–277.

    Google Scholar 

  3. Boulton, A. J., H. M. Valett & S. G. Fisher, 1992. Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Arch. Hydrobiol. 125: 37–61.

    Google Scholar 

  4. Broodbakker, N., 1983. The subfamily Candoninae (Crustacea, Ostracoda) in the West indies. Bijdr. Dierk. 53: 287–326.

    Google Scholar 

  5. Broodbakker, N., 1984. The distribution and zoogeography of freshwater Ostracoda in the West Indies. Bijdr. Dierk. 54: 25–50.

    Google Scholar 

  6. Craw, R. & R. Page, 1988. Panbiogeography: method and metaphor in the new biogeography. In H. W. Ho and S. W. Fox (eds.), Evolutionary Processes and Metaphors. Wiley & Sons, Chichester: 163–190.

    Google Scholar 

  7. Christiansen, K. & D. C. Culver, 1987. Biogeography and the distribution of cave Collembola. J. Biogeogr. 14: 459–477.

    Google Scholar 

  8. Christie, D. M., R. A. Duncan, A. R. Mc Birney, M. A. Richards, W. M. White, K. S. Harp & C. G. Fox, 1992. Drowned islands downstream from the Galapagos hotspot imply extended speciation times. Nature 355: 246–248.

    Google Scholar 

  9. Croizat, L, 1978. Deduction, induction and biogeography. Syst. Zool. 27: 209–213.

    Google Scholar 

  10. Danielopol, D. L., 1977. Recherches sur les Ostracodes Entocytheridae. Données sur Sphaeromicola cebennica juberthiei nov. ssp. et Sphaeromicola cirolanae Rioja. Int. J. Speleol. 9: 21–41.

    Google Scholar 

  11. Danielopol, D. L., 1980. An essay to assess the age of the freshwater interstitial ostracods of Europe. Bijdr. Dierk. 50: 243–291.

    Google Scholar 

  12. Danielopol, D. L., 1983. Der Einfluss organischer Verschmutzung auf das Grundwasser-Ökosystem der Donau im Raum Wien und Niederösterreich. Forschungsberichte BMGU 5: 5–159.

    Google Scholar 

  13. Danielopol, D. L., 1991. Spatial distribution and dispersal of interstitial Crustacea in alluvial sediments of a backwater of the Danube at Vienna. Stygologia 6: 97–110.

    Google Scholar 

  14. Danielopol, D. L. & G. Bonaduce, 1990a. The colonisation of subsurface habitats by the Loxoconchidae Sars and the Psammocytheridae Klie. In R. Whatley & C. Maybury (eds), Ostracoda and Global Events. Chapman & Hall, London: 437–458.

    Google Scholar 

  15. Danielopol, D. L. & G. Bonaduce, 1990b. Origin and distribution of the interstitial species group Xestoleberis arcturi Triebel (Ostracoda, Crustacea). Cour. Forsch. -Inst. Senckenberg 123: 69–86.

    Google Scholar 

  16. Danielopol, D. L. & C. W. Hart, 1985. Notes on the center of origin and the antiquity of the Sphaeromicolinae, with description of Hobbsiella, new genus (Ostracoda, Entocytheridae). Stygologia 1: 54–70.

    Google Scholar 

  17. Danielopol, D. L. & G. Hartmann, 1986. Ostracoda. In L. Botosaneanu (ed.), Stygofauna Mundi. E. S. Brill, Leiden: 259–294.

    Google Scholar 

  18. Danielopol, D. L., W. E. Piller & T. Huber, 1991. Pseudolimnocythere hainburgensis n. sp. (Ostracoda, Loxoconchidae) aus Wiener Beckens. N. Jb. Geol. Paläont. Mh. 8: 458–469.

    Google Scholar 

  19. Danielopol, D. L. & R. Rouch, 1991. L'adaptation des organismes au milieu aquatique souterrain. Réflexions sur l'apport des recherches écologiques récentes. Stygologia 6: 129–142.

    Google Scholar 

  20. Danielopol, D. L. & K. Wouters, 1992. Evolutionary (Paleo)biology of marine interstitial ostracods. Geobios 25: 207–211.

    Google Scholar 

  21. Darlington, P. J., 1957. Zoogeography: the geographical distribution of animals. Wiley & Sons, New York, 675 pp.

    Google Scholar 

  22. Forester, R. M., 1991. Ostracode assemblages from springs in the western United States: implication for paleophydrology. Mem. ent. Soc. Can. 155: 181–201.

    Google Scholar 

  23. Grimm, N. B. & S. G. Fischer, 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. J. N. Am. Benthol. Soc. 8: 293–307.

    Google Scholar 

  24. Hart, C. W., 1978. A new species of the genus Sphaeromicola (Ostracoda, Entocytheridae, Sphaeromicolinae) from Texas, with notes on relationships between European and North American species. Proc. biol. Soc. Wash. 91: 724–730.

    Google Scholar 

  25. Hagerman, G. H. & R. M. Rieger, 1981. Dispersal of benthic meiofauna by wave and current action in Bogne Sound, North Carolina, USA. P. S. Z. N. I. Mar. Ecol. 2: 245–270.

    Google Scholar 

  26. Hobbs, H. H., Jr., 1971. The enthocytherid ostracods of Mexico and Cuba. Smithson. Contr. Zool. 81: 1–55.

    Google Scholar 

  27. Holsinger, J. & G. Longley, 1980. The subterranean amphipod crustacean fauna of an artesian well in Texas. Smithson. Contr. Zool. 308: 1–162.

    Google Scholar 

  28. Horne, D., 1989. On Tuberoloxoconcha atlantica sp. nov. Stereo-atlas Ostracod Shells 16: 73–76.

    Google Scholar 

  29. Humphries, C. J. & L. R. Parenti, 1986. Cladistic biogeography. Clarendon Press, London, 98 pp.

    Google Scholar 

  30. Hsu, K. J., 1978. When the Black Sea was drained. Scien. Am. 238: 53–62.

    Google Scholar 

  31. Jokiel, P. L., 1990. Long-distance dispersal by rafting: reemergence of an old hypothesis. Endeavour 14: 66–73.

    Google Scholar 

  32. Kern, J. C. & G. L. Taghon, 1986. Can passive recruitment explain harpacticoid copepod distributions in relation to epibenthic structure? J. exp. mar. Biol. Ecol. 101: 1–23.

    Google Scholar 

  33. Lattin, G., 1967. Grundriss der Zoogeographie. G. Fischer, Jena, 602 pp.

    Google Scholar 

  34. Loffler, H. & J. Leibetseder, 1965. Daten zur Dauer des Darmdurchganges bei Vögeln. Zool. Anz. 177: 334–340.

    Google Scholar 

  35. Maddocks, R. F., 1982. Ostracoda. In L. G. Abele (ed.), The Biology of Crustacea, Vol. 1: Systematics, the fossil Record and Biogeography. Academic Press, New York: 221–239.

    Google Scholar 

  36. Maddocks, R. F. & T. M. Illife, 1991. Anchialine podocopid Ostracoda of Galapagos Islands. Zool. J. Linn. Soc. 103: 75–99.

    Google Scholar 

  37. Marmonier, P., 1985. Répartition spatiale des Ostracodes dans les sédiments d'un ruisseau alpin (le Seebach à Lunz, Autriche). Verh. int. Verein. Limnol. 22: 2053–2057.

    Google Scholar 

  38. Marmonier, P., 1988. Biocénoses interstitielles et circulation des eaux dans le sous-écoulement d'un chenal aménagé du Haut Rhône français. Th. Doct. Univ. Lyon 1, 2 vol.: 1–161, 1–108.

  39. Marmonier, P., 1991. Effect of alluvial shift on the spatial distribution of interstitial fauna. Verh. int. Verein. Limnol. 24: 1613–1616.

    Google Scholar 

  40. Marmonier, P. & M. Creuzé des Châtelliers, 1992. Biogeography of the benthic and interstitial living ostracods (Crustacea) of the Rhône River (France). J. Biogeogr. 19: 694–704.

    Google Scholar 

  41. Marmonier, P., C. Meisch, & D. L. Danielopol, 1989. A review of the genus Cavernocypris Hartmann (Ostracoda, Cypridopsinae): systematics, ecology and biogeography. Bull. Soc. Nat. Luxemb. 89: 221–278.

    Google Scholar 

  42. Marmonier, P. & J. V. Ward, 1990. Superficial and interstitial ostracods of the South Platte River (Colorado, USA). Systematics and biogeography. Stygologia 5: 225–239.

    Google Scholar 

  43. Martens, K., 1992. On Namibcypris costata n. gen. n. sp. (Crustacea, Ostracoda, Candoninae) from a spring in northern Namibia, with the description of a new tribe and a discussion on the classification of the Podocopina. Stygologia 7: 27–42.

    Google Scholar 

  44. McKenzie, K. G., 1991. Implications of shallow Tethys and the origin of modern oceans. Aust. Syst. Bot. 4: 37–40.

    Google Scholar 

  45. Myers, A., 1988. Endemism in Hawaiian marine invertebrates. TREE 3: 20–21.

    Google Scholar 

  46. Palmer, M. A., 1988. Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Mar. Ecol. Prog. Ser. 48: 81–91.

    Google Scholar 

  47. Palmer, M. A., 1990. Understanding the movement dynamics of a stream dwelling meiofauna community using marine analogs. Stygologia 5: 67–74.

    Google Scholar 

  48. Palmer, M. A., 1992. Incorporating lotic meiofauna into our understanding of faunal transport processes. Limnol. Oceanogr. 37: 329–341.

    Google Scholar 

  49. Palmer, M. A., A. E. Bely & K. E. Berg, 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89: 182–194.

    Google Scholar 

  50. Reyment, R., 1983. West african and north american transgressional maxima and the dispersal of benthic organisms. J. Afr. Earth. Sci. 1: 255–262.

    Google Scholar 

  51. Roca, J. & D. L. Danielopol, 1991. Exploration of interstitial habitats by the phytophilous ostracod Cypridopsis vidua (O. F. Müller): experimental evidence. Annls. Limnol. 27: 243–252.

    Google Scholar 

  52. Rogulj, B., P. Marmonier, R. Lattinger & D. L. Danielopol, 1994. Fine-scale distribution of hypogean Ostracoda in the interstitial habitats of the Rivers Sava and Rhône. Hydrobiologia 287: 19–28.

    Google Scholar 

  53. Rosen, D. E., 1978. Vicariant patterns and historical explanation in biogeography. Syst. Zool. 27: 159–188.

    Google Scholar 

  54. Schram, F. R., 1986. Crustacea. Oxford Univ. Press, New York, 606 pp.

    Google Scholar 

  55. Sohn, I. G. & L. S. Kornicker, 1979. Viability of freeze-dried eggs of the freshwater Heterocypris incongruens. In N. Kristic (ed.), Taxonomy, Biogeography and Distribution of Ostracodes. Serbian Geol. Soc. Belgrade: 1–4.

  56. Stock, J. H., 1980. Regression model evolution as exemplified by the genus Pseudoniphargus (Amphipoda). Bijdr. Dierk. 50: 105–144.

    Google Scholar 

  57. Stock, J. H., 1990. Insular groundwater biotas in the (sub)tropical Atlantic: a biogeographic synthesis. Atti Convegni Acad. do Lincei 85: 695–713.

    Google Scholar 

  58. Tilzer, M., 1973. Zum problem der Ausbreitungsfähigkeit von limnisch-interstitiellen Grundwassertieren am Beispiel von Troglochaetus beranecki Delacheaux (Polychaeta, Arachianelida). Arch. Hydrobiol. 72: 263–269.

    Google Scholar 

  59. Vallet, H. M., S. G. Fisher & E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran desert stream. J. N. Am. Benthol. Soc. 9: 201–215.

    Google Scholar 

  60. Weissleader, L. S., N. L. Gilinsky, R. M. Ross & T. M. Cronin, 1989. Biogeography of marine podocopid ostracodes in Micronesia. J. Biogeogr. 16: 103–114.

    Google Scholar 

  61. Westheide, W., 1991. The meiofauna of the Galapagos. In M. J. James (ed.), Galapagos Marine Invertebrates. Taxonomy, biogeography and evolution in Darwin's Islands. Plenum Press, New York: 37–73.

    Google Scholar 

  62. Witte, L. & D. Van Harten, 1991. Polymorphism, biogeography and systematics of Kotoracythere inconspicua (Brady, 1980) (Ostracoda: Pectocytheridae). J. Biogeogr. 18: 427–436.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

U.A. CNRS N° 1451 ‘Ecologie des Eaux Douces et des Grands Fleuves’

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Danielopol, D.L., Marmonier, P., Boulton, A.J. et al. World subterranean ostracod biogeography: dispersal or vicariance. Hydrobiologia 287, 119–129 (1994). https://doi.org/10.1007/BF00006901

Download citation

Key words

  • Ostracoda
  • biogeography
  • ecology
  • vicariance model
  • dispersionist model