Skip to main content
Log in

Relative effects of Daphnia and Ceriodaphnia on phosphorus-chlorophyll relationships in small urban lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Empirical models based on zooplankton biomass were used to predict mean summer chlorophyll a (Chl a) and to examine how zooplankton influenced the total phosphorus (TP) - Chl a relationship. Four years of data were analyzed for three lakes having similar TP concentrations but varied abundances of Daphnia and Ceriodaphnia. Mean TP did not correlate significantly with mean Chl a during the study period, although mean Daphnia density was a good predictor of Chl a concentration (p > 0.001). Both residuals from the TP - Chl a relationship (p > 0.001) and Secchi depth (p > 0.007) were negatively correlated with Daphnia abundance. Ceriodaphnia abundance was positively correlated with Chl a (p > 0.002) and Secchi depth (p > 0.001). Mean size of Daphnia during spring was the best predictor of the Daphnia-Ceriodaphnia shift in mid-summer. Early establishment of a large-sized Daphnia cohort may prevent their summer elimination by Chaoborus and intensify competition with Ceriodaphnia. These results imply an important link between Daphnia and Ceriodaphnia thereby limiting the utility of Chl a - TP model predictions in these small, urban lakes. This linkage and the differential effect of these two zooplankton species on planktonic algae deserve further consideration in similar lakes where phytoplankton and zooplankton tend to be tightly coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbrictllkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–455.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of the plankton. Science 150: 28–35.

    Google Scholar 

  • Canfield, D. E.Jr, 1983. Prediction of chlorophyll a concentrations in Florida lakes: the importance of phosphorus and nitrogen. Wat. Res. Bull. 19: 255–262.

    Google Scholar 

  • Carney, H. J. & J. J. Elser, 1990. Strength of zooplanktonphytoplankton coupling in relation to lake trophic state, p. 613–631. In M. M. Tilzer & C. Serruya (eds), Ecological structure and function in large lakes. Sci. Tech.

  • Carpenter, S. R., J. K. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Google Scholar 

  • Chow-Fraser, P. & R. Knoechel, 1985. Factors regulating in situ filtering rates of cladocera. Can. J. Fish. aquat. Sci. 42: 567–576.

    Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: an experimental test of the size efficiency hypothesis. Ecology 55: 605–613.

    Google Scholar 

  • Elser, J. J. & C. R. Goldman, 1991. Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnol. Oceanogr. 36: 64–90.

    Google Scholar 

  • Evans, M. S. & D. W. Sell, 1985. Mesh size and collection characteristics of 50-cm diameter conical plankton nets. Hydrobiol. 122: 97–104.

    Google Scholar 

  • Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.

    Google Scholar 

  • Gliwicz, Z. M. & W. Lampert, 1990. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71: 691–702.

    Google Scholar 

  • Hoyer, M. V. & J. R. Jones, 1983. Factors affecting the relation between phosphorus and chlorophyll a in Midwestern reservoirs. Can. J. Fish. aquat. Sci. 40: 1902–1909.

    Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen. 167: 191–194.

    Google Scholar 

  • Lynch, M., 1978, Complex interactions between natural coexploiters — Daphnia and Ceriodaphnia. Ecology 59: 552–564.

    Google Scholar 

  • Mackay, N. A., S. R. Carpenter, P. A. Soranna and M. J. Vanni. 1990. The impact of two Chaoborus species on a zooplankton community. Can. J. Zool. 68: 981–985.

    Google Scholar 

  • McCabe, G. & W. J. O'Brien, 1983. The effects of suspended silt on feeding and reproduction of Daphnia pulex. Am. Mid. Nat. 110: 324–337.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Google Scholar 

  • Moore, L. & K. Thorton (ed.), 1988. Lake and reservoir restoration guidance manual. North American Lake Management Society and U.S. EPA.

  • Nicholls, K. H. & P. J. Dillon, 1978. An evaluation of phosphorus-chlorophyll-phytoplankton relationships for lakes. Int. Revue. ges. Hydrobiol. 63: 141–154.

    Google Scholar 

  • Noble, R. L., 1981. Management of forage Fishes in impoundments of the southern United States. Trans. am. Fish. Soc. 110: 738–750.

    Google Scholar 

  • Pace, M. L., 1984. Zooplankton community structure, but not biomass, influences the phosphorus — chlorophyll a relationship. Can. J. Fish. aquat. Sci. 41: 1089–1096.

    Google Scholar 

  • Pastorok, R. A. 1981. Prey vulnerabilities and size selection by Chaoborus larvae. Ecology 62: 1311–1324.

    Google Scholar 

  • Peters, R. H., 1986. The role of prediction in limnology. Limnol. Oceanogr. 31: 1143–1159.

    Google Scholar 

  • Prairie, Y. T., C. M. Duarte & J. Kalff, 1989. Unifying nutrient chlorophyll relationships in lakes. Can. J. Fish. aquat. Sci. 46: 1176–1182.

    Google Scholar 

  • Rast, W., R. A. Jones & G. F. Lee, 1983. Predictive capability of U.S. OECD phosphorus loading — eutrophication response models. J. Wat. Poll. Cont. Fed. 55: 990–1003.

    Google Scholar 

  • Ravera, O., 1980. Effects of eutrophication on zooplankton. Prog. Wat. Tech. 12: 141–159.

    Google Scholar 

  • Redfield, G. W, 1984. Modifications to the Schindler-Patalas zooplankton trap. Verh. int. Ver. Limnol. 22: 1417–1424.

    Google Scholar 

  • Redfield, G. W, 1991. Phosphorus, chlorophyll and the comparative limnology of three suburban lakes in Northern Virginia, U.S.A. Verh. int. Ver. Limnol. 24: 1294–1299.

    Google Scholar 

  • Riessen, H. P., 1990, Demographic analysis of Chaoborus predation on Daphnia pulex. Verh. Int. Ver. Limnol. 24: 339–343.

    Google Scholar 

  • Rigler, F. H., 1966. Radiobiological analysis of inorganic phosphorus in lake water. Verh. Int. Ver. Limnol. 16: 465–470.

    Google Scholar 

  • Sarnelle, O., 1992. Nutrient enrichment and grazer effects on phytoplankton in lakes. Ecology 73: 551–560.

    Google Scholar 

  • Schindler, D. W., 1978. Factors regulating phytoplankton production and standing crop in the worlds fresh waters. Limnol. Oceanogr. 23: 478–486.

    Google Scholar 

  • Schwartz, S. S., 1984. Life history strategies in Daphnia: a review and predictions. Oikos 42: 114–122.

    Google Scholar 

  • Sell, D. W. & M. S. Evans, 1982. A statistical analysis of subsampling and an evaluation of the Folsom plankton splitter. Hydrobiol. 94: 223–230.

    Google Scholar 

  • Shapiro, J., 1990. The importance of trophic-level interactions to the abundance and species composition of algae in lakes. In J. Barica and L. Mur (eds), Hypereutrophic ecosystems. Dr W. Junk Publishers, The Hague: 105–115.

    Google Scholar 

  • Smith, V. H., 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnol. Oceanogr. 27: 1101–1112.

    Google Scholar 

  • Smith, V. H. & J. Shapiro, 1981. Chlorophyll — phosphorus relations in individual lakes. Their importance to lake restoration strategies. Envir. Sci. Technol. 15: 444–451.

    Google Scholar 

  • Sprules, W. G., L. B. Holtby & G. Griggs, 1981. A micro-computerbased measuring device for biological research. Can. J. Zool. 59: 1611–1614.

    Google Scholar 

  • Taylor, B. E., 1988. Analyzing population dynamics of zooplankton. Limnol. Oceanogr. 33: 1266–1273.

    Google Scholar 

  • Vollenweider, R. A, 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Tech. Rep. OECD Paris, DAS/CSI/68, 27, 159 pp.

  • Vollenweider, R. A., 1975. Input-output models with special reference to the phosphorus loading concept in limnology. Schweiz. Z. Hydrol. 37: 53–84.

    Google Scholar 

  • Ward, J., 1955. A description of a new zooplankton counter. Microsc. Soc. 96: 371–373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahady, T.D., Redfield, G.W. Relative effects of Daphnia and Ceriodaphnia on phosphorus-chlorophyll relationships in small urban lakes. Hydrobiologia 288, 47–55 (1994). https://doi.org/10.1007/BF00006805

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006805

Key words

Navigation