, Volume 150, Issue 1, pp 25–31 | Cite as

Evidence for competition between mudsnails (Hydrodiidae): a field experiment

  • A. J. Cherrill
  • R. James


The paper describes an experimental investigation of competition between Hydrobia ulvae and H. ventrosa using enclosed populations at a site at which the species coexist naturally. lntraspecific competition is more intense than interspecific competition and may have a regulatory influence on snail densities. Other experimental studies of competition between mudsnails are reviewed and found to infer strongly the occurrence of competition in natural field populations. However, features of the species' field distributions previously attributed to interspecific competition can be more convincingly explained by other processes.


Hydrobia enclosures competition distributions character displacement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arthur, W., 1982. The evolutionary consequence of interspecific competition. Adv. ecol. Res. 12: 127–187.Google Scholar
  2. Barnes, R. S. K., 1980. Coastal lagoons. C.U.P., Cambridge, 106 pp.Google Scholar
  3. Begon, M. E. & M. Mortimer, 1981. Population Ecology: A unified study of animals and plants. Blackwell, Oxford, 204 pp.Google Scholar
  4. Bishop, M. J., 1976. Hydrobia neglecta Muus in the British Isles. J. moll. Stud. 42: 319–326.Google Scholar
  5. Bryant, D. M. & J. Weng, 1975. Feeding distribution and behaviour of shelduck in relation to food supply. Wildfowl 26: 20–30.Google Scholar
  6. Cherrill, A. J. & R. James, 1985. The distribution and habitat preferences of four species of Hydrobiidae in East Anglia. J. Conch. 32: 123–133.Google Scholar
  7. Fenchel, T., 1975a. Factors determining the distribution patterns of mudsnails (Hydrobiidae). Oecologia 20: 1–17.Google Scholar
  8. Fenchel, T., 1975b. Character displacement and coexistence in mudsnails (Hydrobiidae). Oecologia 20: 19–32.Google Scholar
  9. Fenchel, T. & L. H. Kofoed, 1976. Evidence for exploitative interspecific competition in mudsnails (Hydrobiidae). Oikos 27: 367–376.Google Scholar
  10. Fretter, V. & A. Graham, 1962. British Prosobranch Molluscs. Ray Society, London, 775 pp.Google Scholar
  11. Fretter, V. & A. Graham, 1978. The Prosobranch Molluscs of Britain and Denmark. J. moll. Stud. Supplement 5, Part 3.Google Scholar
  12. Harvey, H. W., 1960. The chemistry and fertility of sea waters. C.U.P., Cambridge, 240 pp.Google Scholar
  13. Hylleberg, J., 1975. The effect of salinity and temperature on egestion in mudsnails (Gastropoda: Hydrobiidae): I. A study in niche overlap. Oecologia 21: 279–289.Google Scholar
  14. Hylleberg, J., 1976. Resource partitioning on the basis of hydrolytic enzymes in deposit-feeding mudsnails (Hydrobiidae): II. Studies on niche overlap. Oecologia 23: 115–125.Google Scholar
  15. Janzen, D. H., 1980. When is it coevolution? Evolution 34: 611–612.Google Scholar
  16. Kerney, M. P. & R. A. D. Cameron, 1979. A field guide to the land snails of Britain and North-West Europe. Collins, London, 288 pp.Google Scholar
  17. Lassen, H. H., 1979. Reproductive effort in Danish mudsnails (Hydrobiidae). Oecologia 40: 365–369.Google Scholar
  18. Levinton, J. S., 1979. The effect of density upon deposit-feeding populations: Movement, feeding and floating of Hydrobia ventrosa Montagu (Gastropoda: Prosobranchia). Oecologia 43: 27–39.Google Scholar
  19. Levinton, J. S., 1982. The Body size-Prey size hypotheses: The adequacy of body size as a vehicle for character displacement. Ecology 63: 869–872.Google Scholar
  20. Levinton, J. S. & T. S. Bianchi, 1981. Nutrition and food limitation of deposit feeders, I. The role of microbes in the growth of mudsnails. (Hydrobiidae). J. mar. Res. 39: 531–545.Google Scholar
  21. Lopez, G. R. & L. H. Kofoed, 1980. Epipsammic browsing and deposit-feeding in mudsnails (Hydrobiidae). J. mar. Res. 38: 585–599.Google Scholar
  22. Muus, B. J., 1963. Some Danish Hydrobiidae with the description of a new species, Hydrobia neglecta Muus. Proc. malac. Soc. Lond. 35: 131–138.Google Scholar
  23. Muus, B. J., 1967. The fauna of Danish estuaries and lagoons. Distribution and ecology of dominating species in the shallow reaches of the mesohaline zone. Meddr. Damn. Fisk-og Havunders. (N.S.) 5: 1–316.Google Scholar
  24. Pennak, R. W., 1985. The freshwater invertebrate fauna: Problems and solutions for evolutionary success. Am. Zool. 25: 671–687.Google Scholar
  25. Pilkington, M. C., 1971. The veliger stage of Hydrobia ulvae (Pennant). Proc. malac. Soc. Lond. 39: 281–287.Google Scholar
  26. Reise, K., 1985. Tidal Flat Ecology: an experimental approach to species interactions. Springer-Verlag, Berlin. 191 pp.Google Scholar
  27. Roughgarden, J., 1983. Coevolution between competitors. In: Futuyma, D. J. & M. Slatkin, Coevolution. Sinauer, Sunderland, Mass. 555 pp.Google Scholar
  28. Simberloff, D., 1983. Sizes of Coexisting species. In: Futuyma, D. J. & M. Slatkin, Coevolution. Sinauer, Sunderland. Mass. 555 pp.Google Scholar
  29. Slatkin, M., 1980. Ecological character displacement. Ecology 61: 163–178.Google Scholar
  30. Weins, J. A., 1977. On competition and variable environments. Am. Sci. 65: 590–597.Google Scholar

Copyright information

© Dr W. Junk Publishers 1987

Authors and Affiliations

  • A. J. Cherrill
    • 1
  • R. James
    • 2
  1. 1.Department of ZoologyUniversity of LiverpoolLiverpoolEngland
  2. 2.School of Biological SciencesUniversity of East AngliaNorwich, NorfolkEngland

Personalised recommendations