Skip to main content
Log in

Phosphate and calcium carbonate saturation in a stratified coastal lagoon

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seasonal variation of phosphate concentration and saturation index for calcite in water of a small stratified coastal lagoon have been studied. In surface waters, where salinity was low and pH high, the saturation index increased to values near 20, whereas in bottom water, with high salinity and low pH, they were usually lower. The ionic product for H3PO4 was strongly correlated with the ionic product of Ca(OH)2 in surface and bottom waters, and with the ionic product of CaCO3 in bottom, which suggested that chemical composition was mainly controlled by a calcium-phosphate solid phase.

The low concentrations of phosphate in surface were due to chemical precipitation and organic sedimentation, whereas in bottom, calcium phosphate redissolved and organic matter was mineralized producing high concentrations of soluble phosphate (> 60 µmol l−1).

Decrease of calcium-bound phosphate in the upper layers of sediment was in agreement with a diminution of calcium-phosphate precipitation, probably due to a lower influence of seawater in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, 1975. Standard methods for the examination of water and wastewater. APHA, Washington, 1134 pp.

    Google Scholar 

  • Armengol, J., F. A. Comin & P. Lopez, 1983. Balance térmico anual de la laguna de La Massona (Gerona, NE España). Actas del primer Congreso Español de Limnología: 7–16.

  • Avnimelech, Y., 1980. Calcium-carbonate-phosphate surface complex in calcareous systems. Nature 288: 255–257.

    Google Scholar 

  • Avnimelech, Y., 1983. Phosphate and calcium carbonate solubilities in Lake Kinneret. Limnol. Oceanogr. 28: 640–645.

    Google Scholar 

  • Berner, R. A., 1975. The role of magnesium in the crystal growth of calcite and aragonite from seawater. Geochim. Cosmochim. Acta 39: 489–504.

    Google Scholar 

  • Brunskill, G. J., 1969. Fayatteville Green Lake, New York II. Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments. Limnol. Oceanogr. 14: 858–861.

    Google Scholar 

  • Burton, E. A. & L. M. Walter, 1990. The role of pH in phosphate inhibition of calcite and aragonite precipitation in seawater. Geochim. Cosmochim. Acta 54: 797–808.

    Google Scholar 

  • De Jonge, V. N. & L. A. Villerius, 1989. Possible role of carbonate dissolution in estuarine phosphate dynamics. Limnol. Oceanogr. 34: 332–340.

    Google Scholar 

  • De Kanel, J. & J. W. Morse, 1978. The chemistry of ortophosphate uptake from seawater on to calcite and aragonite. Geochim. Cosmochim. Acta 42: 1335–1340.

    Google Scholar 

  • Effler, S. W., 1984. Carbonate equilibria and the distribution of inorganic carbon in Saginaw Bay. J. Great Lakes Res. 10: 3–14.

    Google Scholar 

  • Effler, S. W. & C. T. Driscoll, 1985. Calcium chemistry and deposition in ionically enriched Onondaga Lake, New York. Envir. Sci. Technol. 19: 716–720.

    Google Scholar 

  • Enstch, B., K. G. Boto, R. C. Sim & J. T. Wellington, 1983. Phosphate and nitrogen in coral reef sediments. Limnol. Oceanogr. 28: 465–476.

    Google Scholar 

  • Golterman, H. L., 1982. La geochimie du Rhin et du Rhone et l'impact humain. Hydrobiologia 91: 85–91.

    Google Scholar 

  • Golterman, H. L. & F. A. Kouwe, 1980. Chemical budgets and nutrient pathways. In E. D. le Cren & R. H. MaConnell (eds), I.B.P. 22: The functioning of freshwater systems. Cambridge University Press, Cambridge, 85–140.

    Google Scholar 

  • Golterman, H. L. & M. L. Meyer, 1985. The geochemistry of two hard water rivers, the Rhine and the Rhone. Part 2: The apparent solubility of calcium carbonate. Hydrobiologia 126: 11–19.

    Google Scholar 

  • Green, W. J., D. E. Canfield & B. A. Steinly, 1985. Special variations in and controls on the calcite saturation index in Acton Lake, Ohio. Freshwat. Biol. 15: 525–533.

    Google Scholar 

  • Hieltjes, A. H. & L. Lijklema, 1980. Fractionation of inorganic phosphates in calcareous sediments. J. envir. Qual. 9: 405–407.

    Google Scholar 

  • Jacobsen, O. S., 1978. A description model for phosphate sorption by lake sediments. Proceedings of Interactions between sediment and water 6th Nordic Symposium on sediments. 9–12.3.1978 Hurdal Norwey: 127–136.

  • Kester, D. R. & R. M. Pytkowicz, 1967. Determination of the apparent dissociation constants of phosphoric acid in seawater. Limnol. Oceanogr. 12: 243–252.

    Google Scholar 

  • Kuchler-Krischun, J. & J. Kleiner, 1990. Heterogeneously nucleated calcite precipitation in Lake Constance. A short time resolution study. Aquat. Sci. 52: 176–197.

    Google Scholar 

  • Kuo, S. & E. G. Lotse, 1972. Kinetics of phosphate adsorption by calcium carbonate and Ca-kaolinite. Soil Sci. Soc. am. Proc. 36: 725–729.

    Google Scholar 

  • Lopez, P., J. Armengol & F. A. Comin,1984. Variación anual de las características químicas de la laguna de La Massona. Limnetica 1: 1–8.

    Google Scholar 

  • Mehrbach, C., C. H. Culberson, J. E. Hawley & R. M. Pytkowicz, 1973. Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18: 897–907.

    Google Scholar 

  • Morel, F. M. M., 1983. Principles of aquatic chemistry. J. Wiley & Sons, N.Y., 446 pp.

    Google Scholar 

  • Mucci, A., 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures and one atmosphere total pressure. Am. J. Sci. 283: 780–799.

    Google Scholar 

  • Otsuki, A. & R. G. Wetzel, 1974. Calcium and total alkalinity budgets and calcium carbonate precipitation of a small hardwater lake. Arch. Hydrobiol. 73: 14–30.

    Google Scholar 

  • Stirling, H. P. & A. P. Wormald, 1977. Phosphate/sediment interaction in Tolo and Long Harbours, Hong Kong and its role in estuarine phosphate availability. Estuar. coast. mar. Sci. 5: 631–642.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1965. A manual of seawater analysis. Fish. Res. Bd can. Bull. 125: 1–203.

    Google Scholar 

  • Stumm, W. & J. O. Leckie, 1971. Phosphate exchange with sediments: Its role in the productivity of surface waters. Adv. Water Pollut. Res. 26: 1–16.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1981. Aquatic chemistry. J. Wiley & Sons, N.Y., 780 pp.

    Google Scholar 

  • Walter, L. M., 1986. Relative efficiency of carbonate dissolution and precipitation during diagenesis: A progress report on the role of solution chemistry. In D. L. Gautier (ed.), Roles of organic matter in mineral diagenesis. Soc. Econ. Paleon. Mineral. Spec. Publ. 38: 1–12.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, P., Morguí, J.A. Phosphate and calcium carbonate saturation in a stratified coastal lagoon. Hydrobiologia 228, 55–63 (1992). https://doi.org/10.1007/BF00006476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006476

Key words

Navigation