Advertisement

Hydrobiologia

, Volume 79, Issue 3, pp 255–259 | Cite as

A continuous-flow system for growing fresh-water sponges in the laboratory

  • Michael A. Poirrier
  • J. C. Francis
  • Ronald A. LaBiche
Article

Abstract

Two fresh-water sponge species, Ephydatia fluviatilis and Spongilla alba, were grown from gemmules in the laboratory. A system incorporating a continuous flow of filtered habitat water and live bacteria from a chemostat culture as a food source were used. Experiments with this system demonstrated a relationship between the concentration of bacteria and sponge growth rate. Because the continuous flow of water eliminates the effects of substances released by sponges and growth rate can be predicted for a given bacterial concentration, this system permits experimental studies which were not feasible in the past.

Keywords

fresh-water sponges sponge culture chemostat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beary, D. A. & Francis, J. C., 1980. Adaptive signicicance of the alkaline phosphatase regulatory mechanism in chemostat cultures of Escherichia coli K-12. Biochem. Genetics, (Accepted for publication).Google Scholar
  2. Bergquist, P. R., 1978. Sponges, University of California Press, Berkely. 280 pp.Google Scholar
  3. Fell, Paul E., 1967. Sponges. IN F. H. Wilt & Wessels, N. K., Eds., Methods in developmental Biology, Crowell-Collier, New York, pp. 265–276.Google Scholar
  4. Francis, J. C. & King, S. L., 1979. Phosphate uptake in chemostat cultures of Escherichia coli K-12 subjected to periodic β-Glycerophosphate pulsing. Can. J. Microbiol., 25: 560–564.PubMedGoogle Scholar
  5. Harrison, F. W. & Simpson, T. L., 1976. Introduction: Principles and perspectives in sponge biology. IN F. W. Harrison & Cowden, R. R., Eds., Aspects of Sponge Biology, Academic Press, New York. pp. 3–17.Google Scholar
  6. Imlay, M. J. & Paige, M. L., 1972. Laboratory growth of freshwater sponges, unionid mussels, and sphaerid clams. Prog. Fish Cult., 34: 210–215.Google Scholar
  7. King, S. K. & Francis, J. C., 1975. A chemostat culture of E. coli K-12 limited by the activity of alkaline phosphatase. Appl. Microbiol., 30: 267–270.PubMedGoogle Scholar
  8. Penney, J. T., 1933. Reduction and regeneration in fresh-water sponges (Spongilla discoides) J. expl. Zool., 65: 475–497.Google Scholar
  9. Poirrier, M. A., 1974. Ecomorphic variation in gemmoscleres of Ephydatia fluviatilis Linnaeus (Porifera: Spongillidae) with comments upon its systematics and ecology. Hydrobiologia 44: 337–347.Google Scholar
  10. Poirrier, M. A., 1976. A taxonomic study of the Spongilla alba, S. cenota, S. wagneri species group (Porifera: Spongillidae) with ecological observations of S. alba. In Harrison F. W. & Cowden R. R., Eds., Aspects of Sponge Biology, Academic Press, New York. pp. 203–213.Google Scholar
  11. Rasmont, R., 1961. Une technique de culture des èponges d'eau douce en milieu coptrolé. Ann. Soc. r. Zool. Belg., 91: 147–156.Google Scholar
  12. Simpson, T. L., 1963. The biology of the marine sponge Microciona prolifera (Ellis & Solander). I A study of cellular function and differentiation. J. expl. Zool., 154: 135–147.Google Scholar
  13. Simpson, T. L. & Rodan, G. A., 1976. Recent investigations of the involvement of 3′, 5′ cyclicamp in the development physiology of sponge gemmules. In Harrison F. W. & Cowden, R. R., Eds., Aspects of Sponge Biology, Academic Press, New York. pp. 51–67.Google Scholar

Copyright information

© Dr W. Junk Publishers 1981

Authors and Affiliations

  • Michael A. Poirrier
    • 1
  • J. C. Francis
    • 1
  • Ronald A. LaBiche
    • 1
  1. 1.Dept. of Biological SciencesUniversity of New OrleansLake Front, New Orleans U.S.A.

Personalised recommendations