Skip to main content
Log in

Grazing by rotifers and crustacean zooplankton on nanoplanktonic protists

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Predation on nanoflagellates by metazoan zooplankton was investigated using a radioactively labeled flagellate, Poterioochromonas malhamensis, as a tracer cell in laboratory incubations of freshly collected plankton assemblages. Experiments conducted in the fall, winter and spring indicated that rotifers dominated the grazing on nanoflagellates by metazoans in the winter (68%) and spring (92%). Rotifer grazing was not determined in the autumn. It is likely that the greater impact of rotifer grazing in the spring was due to the occurrence of abundant filamentous cyanobacteria and gelatinous colonial phytoplankton which selectively depressed feeding rates of crustaceans compared to rotifers. Crustacean predation on nanoflagellates was highest in the autumn when cladocerans (primarily Daphnia spp.) were abundant. Predation by metazoan zooplankton in this lake appeared capable of removing the total standing stock of heterotrophic and phototrophic nanoplankton in < 1 d. Impacts of ciliated protozoa on nanoplankton, calculated from abundances and literature feeding rates, ranged from approximately one-third to four times that of metazoan predation depending on season and method of calculation. The relative importance of the different groups of predators appears to vary seasonally which is expected to alter the transfer of energy, carbon and nutrients from bacteria to higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) — a review. Hydrobiologia 255/256: 231–246.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Bennett, S. J., R. W. Sanders & K. G. Porter, 1990. Heterotrophic, autotrophic and mixotrophic nanoflagellates: seasonal abundances and bacterivory in a eutrophic lake. Limnol. Oceanogr. 35: 1821–1832.

    Google Scholar 

  • Bleiwas, A. H. & P. M. Stokes, 1990. Filtering rates of Diaptomus minutus, Bosmina spp., Diaphanosoma sp., Holopedium gibberum (Crustacea), and zooplankton community grazing rates in some acidic and circumneutral Ontario lakes. Can. J. Fish. aquat. Sci. 47: 495–504.

    Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1982. Seasonal patterns of feeding by natural populations of Keratella, Polyarthra, and Bosmina: clearance rates, selectivities, and contributions to community grazing. Limnol. Oceanogr. 27: 918–934.

    Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1987. Quantitative comparison of food niches in some freshwater zooplankton, a multitracer-cell approach. Oecologia 72: 331–340.

    Google Scholar 

  • Burns, C. W., 1968. Direct observations of mechanisms regulating feeding behavior of Daphnia, in lakewater. Int. Revue ges. Hydrobiol. 53: 83–100.

    Google Scholar 

  • Burns, C. W., D. J. Forsyth, J. F. Haney, M. R. James, W. Lampert & R. Pridmore, 1987. Mechanisms of coexistence and exclusion of zooplankton by cyanobacteria in Lake Rotongaio. N.Z.J. Mar. Freshwat. Res. 21: 537–538.

    Google Scholar 

  • Caron, D. A., 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Envir. Microbiol. 46: 491–498.

    Google Scholar 

  • Caron, D. A., 1984. The role of heterotrophic microflagellates in plankton communities. Ph.D. Thesis. MIT/WHOI, WHOI-84–35.

  • Carrick, H. J., G. L. Fahnenstiel, E. F. Stoermer & R. G. Wetzel, 1991. The importance of zooplankton-protozoan trophic couplings in Lake Michigan. Limnol. Oceanogr. 36: 1335–1345.

    Google Scholar 

  • DeMott, W. R., 1985. Relations between filter mesh-size, feeding mode, and capture efficiency for cladocerans feeding on ultrafine particles. Arch. Hydrobiol. 21: 125–134.

    Google Scholar 

  • Dolan, J. R. & C. L. Gallegos, 1991. Trophic coupling of rotifers, microfiagellates, and bacteria during fall months in the Rhode River Estuary. Mar. Ecol. Prog. Ser. 77: 147–156.

    Google Scholar 

  • Ducklow, H. W., D. A. Purdie, P. J. L. Williams & J. M. Davies, 1986. Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232: 865–867.

    Google Scholar 

  • Elser, J. J., 1992. Phytoplankton dynamics and the role of grazers in Castle lake, California. Ecology 73: 887–902.

    Google Scholar 

  • Gilbert, J. J. & K. G. Bogdan, 1984. Rotifer grazing: in situ studies on selectivity and rates, In D. G. Meyers & J. R. Strickler (ed.), Trophic Interactions within Aquatic Ecosystems. Westview Press, Inc. 97–133.

  • Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter feeding zooplankton in a eutrophic lake. Ekol. Pol. 25: 179–225.

    Google Scholar 

  • Güde, H., 1988. Direct and indirect influences of crustacean zooplankton on bacterioplankton in Lake Constance. Hydrobiologia 159: 63–73.

    Google Scholar 

  • Haney, J. F., 1973. An in situ examination of the grazing activities of natural zooplankton communities. Arch. Hydrobiol. 72: 87–132.

    Google Scholar 

  • Haney, J. F., 1985. Regulation of cladoceran filtering rates in nature by body size, food concentration, and diel feeding patterns. Limnol. Oceanogr. 30: 397–411.

    Google Scholar 

  • Hartmann, H. J., 1985. Feeding of Daphnia pulicaria and Diaptomus ashlandi on mixtures of unicellular and filamentous algae. Verh. int. Ver. Limnol. 22: 3178–3183.

    Google Scholar 

  • Hawkins, P. & W. Lampert, 1989. The effect of Daphnia body size on filtering rate inhibition in the presence of a filamentous cyanobacterium. Limnol. Oceanogr. 34: 1084–1089.

    Google Scholar 

  • Hessen, D. O., 1985. Filtering structures and particle size selection in coexisting Cladocera. Oecologia. 66: 368–372.

    Google Scholar 

  • Hessen, D. O., T. Andersen & A. Lyche, 1989. Differential grazing and resource utilization of zooplankton in a humic lake. Arch. Hydrobiol. 114: 321–347.

    Google Scholar 

  • Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwat. Biol. 19: 285–296.

    Google Scholar 

  • Knisely, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia. 69: 86–94.

    Article  Google Scholar 

  • Knoechel, R. & L. B. Holtby, 1986. Construction and validation of a body-length-based model for the prediction of cladoceran community filtering rates. Limnol. Oceanogr. 31: 1–16.

    Google Scholar 

  • Lampert, W., 1987. Laboratory studies on zooplankton-cyanobacteria interactions. N.Z. J. Mar. Freshwat. Res. 21: 483–490.

    Google Scholar 

  • Leeper, D. A., 1990. Utilization of autotrophic, mixotrophic and heterotorphic nanoflagellates by freshwater zooplankton. M.S. Thesis, University of Georgia, Athens, Georgia.

    Google Scholar 

  • Mazumder, A., D. R. S. Lean & W. D. Taylor, 1992. Dominance of small filter feeding zooplankton in Lake Ontario foodweb. J. Great Lakes Res. 18: 456–466.

    Google Scholar 

  • Nagata, T., 1988. The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol. Oceanogr. 33: 504–517.

    Google Scholar 

  • Orcutt, J. D., Jr. & M. L. Pace, 1984. Seasonal dynamics of rotifer and crustacean zooplankton populations in a eutrophic monomictic lake with a note on rotifer sampling techniques. Hydrobiologia 119: 73–80

    Google Scholar 

  • Pace, M. L., 1982. Planktonic ciliates: their distribution, abundance, and relationship to microbial resources in a monomictic lake. Can. J. Fish. aquat. Sci. 39: 1106–1116.

    Google Scholar 

  • Pace, M. L. & E. Funke, 1991. Regulation of planktonic microbial communities by nutrients and herbivores. Ecology 72: 904–914.

    Google Scholar 

  • Pace, M. L., G. B. McManus & S. E. G. Findlay, 1990. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol. Oceanogr. 35: 795–808.

    Google Scholar 

  • Pace, M. L. & J. D. Orcutt Jr., 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26: 822–830.

    Google Scholar 

  • Pernie, G. L., D. Scavia, M. L. Pace & H. J. Carrick, 1990. Micrograzer impact and substrate limitation of bacterio-plankton in Lake Michigan. Can. J. Fish. aquat. Sci. 47: 1836–1841.

    Google Scholar 

  • Persson, G., 1985. Community grazing and the regulation of in situ clearance rates and feeding of planktonic crustaceans in lakes in the Kuokkel area, northern Sweden. Arch. Hydrobiol. Suppl. 70: 197–238.

    Google Scholar 

  • Peters, R. H., 1984. Methods for the study of feeding, grazing and assimilation by zooplankton, In J. A. Downing & F. H. Rigler (ed.), A manual for the assessment of secondary productivity in fresh waters. Blackwell Scientific Publications. 336–412.

  • Pomeroy, L. R., 1974. The ocean's food web, a changing paradigm. Bioscience 24: 499–504.

    Google Scholar 

  • Pomeroy, L. R. & W. J. Wiebe, 1988. Energetics of microbial food webs. Hydrobiologia 159: 7–18.

    Google Scholar 

  • Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.

    Google Scholar 

  • Porter, K. G. & J. D. Orcutt Jr., 1980. Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia, In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communitites. The University Press of New England. 268–281.

  • Porter, K. G., H. Paerl, R. Hodson, M. Pace, J. Priscu, B. Riemann, D. Scavia & J. Stockner, 1988. Microbial interactions in lake food webs, In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer-Verlag: 209–227.

  • Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace & R. W. Sanders, 1985. Protozoa in planktonic food webs. J. Protozool. 32: 409–415.

    Google Scholar 

  • Riemann, B., 1985. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl. envir. Microbiol. 50: 187–193.

    Google Scholar 

  • Sanders, R. W., D. A. Caron & U.-G. Berninger, 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser. 86: 1–14.

    Google Scholar 

  • Sanders, R. W. & K. G. Porter, 1986. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion. Appl. envir. Microbiol. 52: 101–107.

    Google Scholar 

  • Sanders, R. W. & K. G. Porter, 1990. Bacterivorous flagellates as food resources for the freshwater crustacean zooplankter Daphnia ambigua. Limnol. Oceanogr. 35: 188–191.

    Google Scholar 

  • Sanders, R. W., K. G. Porter, S. J. Bennett & A. E. DeBiase, 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol. Oceanogr. 34: 673–687.

    Google Scholar 

  • Sanders, R. W., K. G. Porter & D. A. Caron, 1990. Relationship between phototrophy and phagotrophy in the mixotrophic chrysophyte Poterioochromonas malhamensis. Microb. Ecol. 19: 97–109.

    Google Scholar 

  • Sanders, R. W. & S. A. Wickham, 1993. Planktonic protozoa and metazoa: predation, food quality and population control. Mar. Microb. Food Webs 7: 197–223.

    Google Scholar 

  • Scheda, S. M. & B. C. Cowell, 1988. Rotifer grazers and phytoplankton: seasonal experiments on natural communities. Arch. Hydrobiol. 114: 31–44.

    Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1988. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. 33: 1225–1227.

    Google Scholar 

  • Sierszen, M. E. & T. M. Frost, 1990. Effects of experimental acidification on zooplankton feeding rates and selectivity. Can. J. Fish. aquat. Sci. 47: 772–779.

    Google Scholar 

  • Simek, K. & V. Straskrabová, 1992. Bacterioplankton production and protozoan bacterivory in a mesotrophic reservoir. J. Plankton Res. 14: 773–787.

    Google Scholar 

  • Simon, M., B. C. Cho & F. Azam, 1992. Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implications. Mar. Ecol. Prog. Ser. 86: 103–110.

    Google Scholar 

  • Snell, T W., 1980. Blue-green algae and selection in rotifer populations. Oecologia 46: 343–346.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG*-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Sorokin, Y. & E. B.Paveljeva, 1972. On the characteristics of the pelagic ecosystem of Dalnee lake (Kamchatka). Hydrobiologia 40: 519–552.

    Google Scholar 

  • Stockner, J. G. & K. S. Shortreed, 1989. Algal picoplankton production and contribution to food-webs in oligotrophic British Columbia lakes. Hydrobiologia 173: 151–166.

    Google Scholar 

  • Vanni, M. J. & J. Temte, 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnol. Oceanogr. 35: 697–709.

    Google Scholar 

  • Vaqué, D. & M. L. Pace, 1992. Grazing on bacteria by flagellates and cladocerans in lakes of contrasting food-web structure. J. Plankton Res. 14: 307–321.

    Google Scholar 

  • Verity, P. G., 1991. Measurement and simulation of prey uptake by marine planktonic ciliates fed plastidic and aplastidic nanoplankton. Limnol. Oceanogr. 36: 729–750.

    Google Scholar 

  • Wehr, J. D., 1991. Nutrient and grazer-mediated effects on picoplankton and size structure in phytoplankton communities. Int. Revue ges. Hydrobiol. 76: 643–656.

    Google Scholar 

  • Weisse, T., 1990. Trophic interactions among heterotrophic microplankton, nanoplankton, and bacteria in Lake Constance. Hydrobiologia 191: 111–122.

    Google Scholar 

  • Weisse, T., 1991. The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. J. Plankton Res. 13: 167–185.

    Google Scholar 

  • Williamson, C. E. & N. M. Butler, 1986. Predation on rotifers by the suspension-feeding calanoid copepod Diaptomus pallidus. Limnol. Oceanogr. 31: 393–402.

    Google Scholar 

  • Wylie, J. L. & D. J. Currie, 1991. The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36: 708–728.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, R.W., Leeper, D.A., King, C.H. et al. Grazing by rotifers and crustacean zooplankton on nanoplanktonic protists. Hydrobiologia 288, 167–181 (1994). https://doi.org/10.1007/BF00006240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006240

Key words

Navigation