, Volume 263, Issue 2, pp 95–107 | Cite as

Interspecific differences in metal bioaccumulation and plant-water concentration ratios in five aquatic bryophytes

  • J. López
  • A. Carballeira


We studied the capacity of five species of aquatic bryophyte to accumulate metals, and the relationship between plant metal content and water composition, on the basis of 170 samples taken from 32 rivers in Galicia (NW Spain). In all cases, only the final two centimetres of the apex were analysed. Scapania undulata was the species with the highest accumulatory capacity, and Fissidens polyphyllus was that with the lowest. Fontinalis antipyretica, Rhynchostegium riparioides and Brachythecium rivulare displayed intermediate capacities for metal accumulation, but showed a broader range of variation in body concentration in comparison with similar contamination levels. This resolution capacity, together with a greater resistance to pollution and, in the study region, a wider distribution and higher abundance, suggests that the latter two species are the most useful for bioindication studies. Bioaccumulation factors were high for all metals studied, tending to increase with increasing body concentration but decreasing with increasing water concentration. The relationship between metal in plant and filtrable metal in water was low, but statistically significant for all the metals studied except Co in F. antipyretica and Cd, Pb and Co in S. undulata, F. polyphllyllus and B. rivulare. The influence of physical and chemical variables of the water on bioaccumulation was evaluated using step-wise multiple correlation analysis. Bioaccumulation is largely governed by physical and chemical factors, by the concentration of metal in the water and by the bioaccumulation factor of the bryophyte species. Sulphate concentration, pH and to a lesser extent nitrite, ammonia and FRP (filtrable reactive phosphate) appear to be the most important physical and chemical variables governing metal bioavailability.

Key words

rivers metals bioaccumulation Fontinalis antipyretica Brachythecium rivulare Fissidens polyphyllus Rhynchostegium riparioides Scapania undulata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, H. E., R. H. Hall & T. D. Brisbin, 1980. Metal speciation. Effects on aquatic toxicity. Envir. Sci. Technol. 14: 441–443.Google Scholar
  2. André, B. & C. Lascombe, 1987. Comparaison de deux traceurs de la pollution métallique des cours d'eau: les sédiments et les bryophytes. Sciences de l'eau 6: 225–247.Google Scholar
  3. Baudo, R., G. Galanti, P. Guilizzoni & P. G. Varini, 1981. Relationships between heavy metals and aquatic organisms in lake Mezzola hydrographic system (Northern Italy). 4. Metal concentrations in six submerged aquatic macrophytes. Mem. Ist. ital. Idrobiol. 39: 203–225.Google Scholar
  4. Bourg, A. C. M. & P. W. Schindler, 1979. Effect of EDTA on the adsorption of Cu(II) on amorphous silica. Inorg. Nucl. Chem. Lett. 15: 225–229.Google Scholar
  5. Burton, M. A. S. & P. J. Peterson, 1979. Metal accumulation by aquatic bryophytes from polluted mine streams. Envir. Pollut. 19: 39–46.Google Scholar
  6. Crum, H. A. & L. E. Anderson, 1981. Mosses of Eastern North America, 2. Columbia University Press, New York, 665–1328.Google Scholar
  7. Dietz, F., 1973. The enrichment of heavy metals in submerged plants. In: Jenkins, S. M. (ed.), Advances in Water Pollution Research. 6th Int. Conf., Jerusalem, Pergamon Press, Oxford, New York, 53–62.Google Scholar
  8. Empain, A., 1976a. Estimation de la pollution par métaux lourds dans la Somme par l'analyse des bryophytes aquatiques. Bull. Fr. Piscic. 260: 138–142.Google Scholar
  9. Empain, A., 1976b. Les bryophytes aquatiques utilisés comme traceurs de la contamination en métaux lourds des eaux douces. Mém. Soc. r. Bot. Belg. 7: 141–156.Google Scholar
  10. Empain, A., 1977. Ecologie des populations bryophytiques aquatiques de la Meuse, de la Sambre et de la Somme. Relations avec la qualité des eaux, écophysiologie comparée et étude de la contamination par métaux lourds. Ph. D. thesis, Univ. Liège, Belgium, 179 pp.Google Scholar
  11. Empain, A., 1988. A posteriori detection of heavy-metal pollution of aquatic habitats. In Glime, J. M. (ed.), Methods in Bryology. Proc. Bryol. Meth. Workshop, Mainz: 213–220.Google Scholar
  12. Empain, A., J. Lambinon, C. Mouvet & R. Kirchmann, 1980. Utilisation des bryophytes aquatiques et subaquatiques comme indicateurs biologiques de la qualité des eaux courantes. In Pesson, P. (ed.), La pollution des eaux continentales, Paris, 195–223.Google Scholar
  13. Förstner, U. & G. T. W. Wittmann, 1983. Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin Heidelberg New York Tokyo, 486 pp.Google Scholar
  14. Frisque, G., M. Galoux & A. Bernes, 1983. Accumulation de deux micropolluants (les polychlorobiphényles et le gammaHCH) par des bryophytes aquatiques de la Meuse. Meded. Fac. Landbouwwet. Rijksuniv. Gent. 48: 971–983.Google Scholar
  15. Glime, J. M. & R. Clemons, 1972. Species diversity of stream insects on Fontinalis spp. compared to diversity on artificial substrata. Ecology 53: 458–464.Google Scholar
  16. Glime, J. M. & D. W. Acton, 1979. Temperature effects on assimilation and respiration in the Fontinalis duriaeiperiphyton association. The Bryologist 82: 382–392.Google Scholar
  17. Harding, J. P. C., I. G. Burrows & B. A. Whitton, 1981. Heavy metals in the Derwent reservoir catchment, Northern England. In Say, P. J. & B. A. Whitton (eds), Heavy Metals in Northern England: Environmental and Biological Aspects, Durham, England: 73–86.Google Scholar
  18. Jones, K. C., 1985. Gold, silver and other elements in aquatic bryophytes from a mineralised area of North Wales, U.K. J. of Geochem. Explor. 24: 237–246.Google Scholar
  19. Jones, K. C., P. J. Peterson & B. E. Davies, 1985. Silver and other metals in some aquatic bryophytes from streams in the lead mining district of Mid-Wales, Great Britain. Wat. Air Soil Pollut. 24: 329–338.Google Scholar
  20. Kelly, M. G. & B. A. Whitton, 1989. Interspecific differences in Zn, Cd and Pb accumulation by freshwater algae and bryophytes. Hydrobiologia 175: 1–11.Google Scholar
  21. López, J. & A. Carballeira, 1990. A comparative study of pigment contents and response to stress in five species of aquatic bryophytes. Lindbergia 15: 188–193.Google Scholar
  22. Martinez, J. & M. Sanchez, 1987. Efecto de la contaminación organica sobre indices de feofitinizacion en transplantes de briófitos acuáticos (rio Iregua, La Rioja, España). IV congreso español de Limnologia, Actas: 87–297.Google Scholar
  23. McLean, R. O. & A. K. Jones, 1975. Studies of the tolerance to heavy metals in the flora of the river Ystwyth and Clarach, Wales. Freshwat. Biol. 5: 431–444.Google Scholar
  24. McNaughton, M. G. & A. K. James, 1975. Adsorption of aqueous mercury (II) complexes at the oxide/water interface. J. Colloid Interface Sci. 47: 431–444.Google Scholar
  25. Mouvet, C., 1979. Utilisation des bryophytes aquatiques pour l'étudie de la pollution des cours d'eau par les métaux lourds et les radionucléides. Revue Biol. Ecol. Méd. VI, 3–4: 193–204.Google Scholar
  26. Mouvet, C., 1980. Pollution de l'Amblève par les métaux lourds en particulier le chrome: dosage dans les eaux et les bryophytes aquatiques. Trib. CEBEDEAU 33: 527–538.Google Scholar
  27. Mouvet, C., 1984a. Metaux lourds et mousses aquatiques. Speciation physicochimique, bioaccumulation et toxicit. Ph. D. thesis, Univ. Liège, Belgium, 314 pp.Google Scholar
  28. Mouvet, C., 1984b. Accumulation of chromium and copper by the aquatic moss Fontinalis antipyretica L. ex Hedw transplanted in a metal-contaminated river. Envir. Techn. Letters 5: 541–548.Google Scholar
  29. Mouvet, C., B. Andre & C. Lascombe, 1987. Aquatic mosses for the monitoring of heavy metals in running freshwaters comparison with sediments. International Conference Heavy Metals in the Environment 2: 424–429.Google Scholar
  30. Mouvet, C., E. Pattée & P. Cordebar, 1986. Utilisation des mousses aquatiques pour l'identification et la localisation précise de sources de pollution métallique multiforme. Acta Oecol., Oeccol. Applic. 7: 77–91.Google Scholar
  31. Robinson, G. D., 1981. Adsorption of Cu, Zn and Pb near sulphide deposits by hydrous manganese-iron oxide coatings on stream alluvium. Chem. Geol. 33: 65–79.Google Scholar
  32. Rostan, J. C. & C. Mouvet, 1986. Appors de la spectrophotométrie ultra-violette et de la matière organique dissoute à létudie du fonctionnement des écosystémes dulcicoles. Revue Fr. Sc. Eau 5: 9–28.Google Scholar
  33. Samecka-Cymerman, A., A. J. Kempers & P. L. E. Bodelier, 1991. Preliminary investigations into the background levels of various metals and boron in the aquatic liverwort Scapania uliginosa (Sw.) Dum. Aquat. Bot. 39: 345–352.Google Scholar
  34. Satake, K. & K. Miyasaka, 1984. Evidence of high mercury accumulation in the cell wall of the liverwort Jungermannia vulcanicola Steph. to form particles of a mercury-sulfur compound. J. Bryol. 13: 101–105.Google Scholar
  35. Satake, K., M. Soma, H. Seyama & T. Uehiro, 1983. Accumulation of mercury in the liverwort Jungermannia vulcanicola Steph. in an acid stream Kashiranashigawa in Japan. Arch. Hydrobiol. 99: 80–92.Google Scholar
  36. Satake, K., T. Takamatsu, M. Soma, K. Shibata, M. Nishikawa, P. J. Say & B. A. Whitton, 1989. Lead accumulation and location in the shoots of the aquatic liverwort Scapania undulata (L.) Dum. in stream water at Greenside mine, England. Aquat. Bot. 33: 111–122.Google Scholar
  37. Say, P. J. & B. A. Whitton, 1983. Accumulation of heavy metals by aquatic mosses. 1: Fontinalis antipyretica Hedw. Hydrobiologia 100: 245–260.Google Scholar
  38. Say, P. J., P. J. Harding & B. A. Whitton, 1981. Aquatic mosses as monitors of heavy metal contamination in the River Etherow, England. Envir. Pollut., Ser. B 2: 295–307.Google Scholar
  39. Skaar, H., E. Ophus & B. M. Gullvåg, 1973. Lead accumulation within nuclei of moss leaf cells. Nature 241: 215–216.Google Scholar
  40. Smith, A. J. E., 1978. The moss flora of Britain and Ireland. Cambridge University Press, Cambridge, 706 pp.Google Scholar
  41. Toledo, A. P. P., J. G. Tundisi & V. A. D'Aquino, 1980. Humic acid influence on the growth and copper tolerance of Chlorella sp. Hydrobiologia 71: 261–263.Google Scholar
  42. Wehr, J. D., A. Empain, C. Mouvet, P. J. Say & B. A. Whitton, 1983. Methods for processing aquatic mosses used as monitors of heavy metals. Wat. Res. 17: 985–992.Google Scholar
  43. Wehr, J. D., P. J. Say & B. A. Whitton. 1981. Heavy metals in an industrial polluted river, the Team. In: Say, P. J. & B. A. Whitton (eds), Heavy metals in Northern England: environmental and biological aspects, Durham, England, 99–107.Google Scholar
  44. Wehr, J. D. & B. A. Whitton, 1983. Accumulation of heavy metals by aquatic mosses. 2: Rhynchostegium riparioides. Hydrobiologia 100: 261–284.Google Scholar
  45. Whitton, B. A., N. L. Gale & B. G. Wixson, 1981. Chemistry and plant ecology of zinc-rich wastes dominated by bluegreen algae. Hydrobiologia 83: 331–341.Google Scholar
  46. Whitton, B. A., P. J. Say & B. P. Jupp, 1982. Accumulation of zinc, cadmium and lead by the aquatic liverwort Scapania. Envir. Pollut. 3: 299–316.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • J. López
    • 1
  • A. Carballeira
    • 1
  1. 1.Area de Ecología, Facultad de BiologíaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations