Advertisement

Environmental Biology of Fishes

, Volume 6, Issue 3–4, pp 257–268 | Cite as

Prey capture by Luciocephalus pulcher: implications for models of jaw protrusion in teleost fishes

  • George V. Lauder
  • Karel F. Liem
Article

Synopsis

Luciocephalus pulcher possesses one of the most protrusible jaws known among teleosts, the premaxillae extending anteriorly a distance of 33% of the head length during feeding. Jaw bone movement during feeding proceeds according to a stereotypical pattern and resembles that of other teleosts except for extreme cranial elevation and premaxillary protrusion. Anatomical specializations associated with cranial elevation include: a highly modified first vertebra with a separate neural spine, articular fossae on the posterior aspect, greatly enlarged zygapophyses on the second vertebra with complex articular condyles, and highly pinnate multi-layered epaxial musculature with multiple tendinous insertions on the skull.

Luciocephalus, despite the extreme jaw protrusion, does not use suction during prey capture: rather, the prey is captured by a rapid lunge (peak velocity of about 150 cm per sec) and is surrounded by the open mouth. Previous hypotheses of the function of upper jaw protrusion are reviewed in relation to jaw movements inLuciocephalus. Protrusion is not obligatorily linked with suction feeding; behavioral aspects of the feeding process limit the possible range of biological roles of a given morphological specialization, and make prediction of role from structure risky.

Keywords

Functional morphology Vertebral column Suction feeding Jaw protrusion Feeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Alexander. R. McN. 1966. The functions and mechanisms of the protrusible upper jaws of two species of cyprinid fish. J. Zool., Lond. 149: 288–296.Google Scholar
  2. Alexander, R. McN. 1967a. The functions and mechanisms of the protrusible upper jaws of some acanthopterygian fish. J. Zool., Lond. 151: 43–64.Google Scholar
  3. Alexander, R. McN. 1967b. Functional design in fishes. Hutchinson and Co., London, 160 pp.Google Scholar
  4. Alexander, R. McN. 1967c. Mechanisms of the jaws of some atheriniform fishes. J. Zool., Lond. 151: 233–255.Google Scholar
  5. Alfred, E.R. 1966. The freshwater fishes of Singapore. Zool. Verh., Leiden 78: 1–68.Google Scholar
  6. Berg, L.S. 1940. Classification of fishes, both recent and fossil. Trav. I. Zool. Acad. Sci. de l'URSS 5: 87–517.Google Scholar
  7. Dullemeijer, P. 1974. Concepts and approaches in animal morphology. Netherlands, Van Gorcum, Assen. 264 pp.Google Scholar
  8. Francois, Y. 1966. Structure et dévelopment de la vertébre deSalmo et des téléosteens. Archs Zool. exp. gén. 107: 287–328.Google Scholar
  9. Gosline, W.A. 1961. Some osteological features of modern lower teleostean fishes. Smith. Misc. Coll. 142: 1–42.Google Scholar
  10. Gosline, W.A. 1968. The suborders of perciform fishes. Proc. U.S. Nat. Mus. 124: 1–77.Google Scholar
  11. Gosline, W.A. 1971. Functional morphology and classification of teleostean fishes. Univ. Press of Hawaii, Honolulu. 280 pp.Google Scholar
  12. Greenwood, P.H. 1974. The cichlid fishes of Lake Victoria, East Africa: The biology and evolution of a species flock. Bull. Br. Mus. Nat. Hist. (Zool.). Suppl. 6: 1–134.Google Scholar
  13. Howes, G.J. 1979. Notes on the anatomy ofMacrochirichthys macrochirus (Valenciennes), 1844, with comments on the Cultrinae (Pisces, Cyprinidae). Bull. Br. Nat. Hist. (Zool.). 36: 147–200.Google Scholar
  14. Lauder, G.V. 1979 Feeding mechanics in primitive teleosts and in the halecomorph fishAmia calva. J. Zool., Lond. 187: 543–578.Google Scholar
  15. Lauder, G.V. 1980a. Hydrodynamics of prey capture in teleost fishes. pp. 161–181. In: D.J. Schneck (ed.) BioFluid Mechanics, 2, Plenum Press, N.Y.Google Scholar
  16. Lauder, G.V. 1980b. Evolution of the feeding mechanism in primitive actinopterygian fishes: a functional anatomical analysis ofPolypterus, Lepisosteus, andAmia. J. Morph. 163: 283–317.Google Scholar
  17. Lauder, G.V. 1980c. The suction feeding mechanism in sunfishes (Lepomis): an experimental analysis. J. Exp. Biol. 88: 49–72.Google Scholar
  18. Lauder, G.V. 1981. Intraspecific functional repertoires in the feeding mechanism of the characoid fishesLebiasina, Hoplias, andChalceus, Copeia 1981: 154–168.Google Scholar
  19. Lauder, G.V. & K.F. Liem. 1980. The feeding mechanism and cephalic myology ofSalvelinus fontanalis: form, function and evolutionary significance. pp. 365–390. In: E.K. Baton (ed.) Charrs: Salmonid Fishes of the GenusSalven Dr. W. Junk Publishers, The Hague.Google Scholar
  20. Laerm, J. 1976. The development, function and design of amphicoelous vertebrae in teleost fishes. Zool. J. Linn. Soc. 58: 237–254.Google Scholar
  21. Lesiuk, T.P. & C.C. Lindsey. 1978. Morphological peculiarities in the neck-bending Amazonian characoid fishRhaphiodon vulpinus. Can. J. Zool. 56: 991–997.Google Scholar
  22. Liem, K.F. 1963. The comparative osteology and phylogeny of the Anabantoidei (Teleostei, Pisces). Illinois Biological Monographs 30: 1–149.Google Scholar
  23. Liem, K.F. 1967. A morphological study ofLuciocephalus pulcher, with notes on gular elements in other recent teleosts. J. Morph. 121: 103–134.Google Scholar
  24. Liem, K.F. 1970. Comparative functional anatomy of the Nandidae (Pisces: Teleostei). Fieldiana, Zool. 56: 1–166.Google Scholar
  25. Liem, K.F. 1978. Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlid fishes. I. Piscivores. J. Morph. 158: 323–360.Google Scholar
  26. Liem, K.F. 1979. Modulatory multiplicity in the feeding mechanism in cichlid fishes, as exemplified by the invertebrate pickers of Lake Tanganyika. J. Zool., Lond. 189: 93–125.Google Scholar
  27. Liem, K.F. 1980a. Adaptive significance of intra- and interspecific differences in the feeding repertoires of cichlid fishes. Amer. Zool. 20: 295–314.Google Scholar
  28. Liem, K.F. 1980b. Acquisition of energy by teleosts: adaptive mechanisms and evolutionary patterns. In: M.A. Ali (ed.) Environmental Physiology of Fishes. NATO Advanced Study Institute, Series A, Life Sciences, Plenum Press, New York.Google Scholar
  29. Liem, K.F. & G.V. Lauder. 1981. The evolution and interrelationships of the actinopterygian fishes. In: R. Davis & R.G. Northcutt (ed.) Fish Neurobiology and Behavior, Univ. of Michigan Press, Ann Arbor. (in press).Google Scholar
  30. Lindsey, C.C. 1978. Form, function and locomotory habits in fish. pp. 1–100. In: W.S. Hoar & D.G. Randall (ed.) Fish Physiology, Academic Press, New York.Google Scholar
  31. Nelson, G.J. 1969. Gill arches and the phylogeny of fishes, with notes on the classification of vertebrates. Bull. Am. Mus. Nat. Hist. 141: 479–552.Google Scholar
  32. Nyberg, D.W. 1971. Prey capture in the largemouth bass. Amer. Midl. Nat. 86: 128–144.Google Scholar
  33. Osse, J.W.M. 1969. Functional anatomy of the head of the perch (Perca fluviatilis L.): an electromyographic study. Neth. J. Zool. 19: 289–392.Google Scholar
  34. Patterson, C. 1964. A review of Mesozoic acanthopterygian fishes with special reference to those of the English chalk. Phil. Trans. R. Soc. Lond., Ser. B. 247: 213–482.Google Scholar
  35. Pietsch, T.W. 1978. The feeding mechanism ofStylephorus chordatus (Teleostei: Lampridiformes): functional and ecological implications. Copeia 1978: 255–262.Google Scholar
  36. Schaeffer, B. & D.E. Rosen. 1961. Major adaptive levels in the evolution of the actinopterygian feeding mechanism. Amer. Zool. 1: 187–204.Google Scholar
  37. Sterba, G. 1962. Freshwater fishes of the world. Vista Books, London. 000 pp.Google Scholar
  38. Symmons, S. 1979. Notochordal and elastic components of the axial skeleton of fishes and their functions in locomotion. J. Zool., Lond. 189: 157–206.Google Scholar
  39. Tchernavin, V.V. 1953. The feeding mechanisms of a deep-sea fishChauliodus sloani Schneider. British Museum (Nat. Hist.), London. 101 pp.Google Scholar
  40. Tweedie, M.W.F. 1952. Notes on Malaysan freshwater fishes. Bull. Raffles Mus. 24: 69–95.Google Scholar
  41. Weber, M. & L.F. de Beaufort. 1922. The fishes of the IndoAustralian Archipelago 4. E.J. Brill, Leiden. 410 pp.Google Scholar
  42. Winterbottom, R. 1974. A descriptive synonymy of the striated muscles of the Teleostei. Proc. Acad. Nat. Sci. (Phil.) 125: 225–317.Google Scholar

Copyright information

© Dr. W. Junk Publishers 1981

Authors and Affiliations

  • George V. Lauder
    • 1
  • Karel F. Liem
    • 1
  1. 1.The Museum of Comparative ZoologyHarvard UniversityCambridgeU.S.A.

Personalised recommendations