, Volume 203, Issue 1–2, pp 63–72 | Cite as

Impact of mild experimental acidification on short term invertebrate drift in a sensitive British Columbia stream

  • David P. Bernard
  • William E. Neil
  • Locke Rowe


We report daytime drift behavior of lotic macroinvertebrates following short term (12 h) additions of HCl or HCl plus AlCl3 to a circumneutral softwater (alkalinity ca. 100 µeq 1-1) mountain stream in British Columbia, Canada. Addition of HCl (pH reduced from 7.0 to 5.9) resulted in an overall tripling of invertebrate drift density with rapid (< 1 h) increases in chironomid Diptera and Trichoptera. Small Ephemeroptera also entered the drift at high densities, but were delayed about 6 h. Addition of AlCl3 (0.71 to 0.95 mg 1-1 total Al3+) in HCl (stream pH reduced to 5.9) resulted in an overall 6-fold increase in invertebrate drift, with rapid increases by Ephemeroptera and delayed responses by chironomids and Trichoptera. These results suggest that the behavior of several macroinvertebrates from low alkalinity, unacidified streams can be altered by simulations of short-term, mild acidic deposition events. Further, the magnitude and timing of entry into the drift varies among taxonomic groups with the presence or absence of low concentrations of aluminum ions.

Key words

acidification aluminum pH stream drift British Columbia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard M. & G. Moreau, 1987. Effects of experimental acidification on a lotic macroinvertebrate community. Hydrobiologia 144: 37–49.Google Scholar
  2. APHA, 1984. Standard methods for the examination of water & wastewater. American Public Health Association, New York.Google Scholar
  3. Barnes, R. B., 1975. The determination of specific forms of aluminum in natural waters. Chem. Geol. 15: 177–191.CrossRefGoogle Scholar
  4. Bell, H. L., 1971. Effect of low pH on the survival and emergence of aquatic insects. Wat. Res. 5: 313–319.CrossRefGoogle Scholar
  5. Bell, H. L. & A. V. Nebeker, 1969. Preliminary studies on the tolerance of aquatic insects to low pH. J. Kansas Entomol. Soc. 42: 230–236.Google Scholar
  6. Bernard, D. P., 1985. Impact of stream acidification on invertebrates: drift responses to in situ experiments augmenting aluminum ion concentrations. M. Sc. Thesis. University of British Columbia.Google Scholar
  7. Burton, T. M., R. M. Sanford & J. W. Allen, 1985. Acidification effects on stream biota and organic matter processing. Can. J. Fish. aquat. Sci. 42: 669–675.Google Scholar
  8. Dillon, P. J., N. D. Yan & H. H. Harvey, 1984. Acidic deposition: effects on aquatic ecosystems. CRC Crit. Rev. Envir. Control 13: 167.Google Scholar
  9. Drablos, D. & A. Tollan (eds.), 1980. Ecological impact of acid precipitation. SNSF, Oslo.Google Scholar
  10. Driscoll, C. T., J. P. Baker, J. J. Bisogni & C. L. Schofield, 1983. Aluminum speciation and equilibria in dilute acidic surface water of the Adirondack region of New York state. In: Bricker, O. P. (ed.). Geologic aspects of acid rain. Ann Arbor Science, Ann Arbor, pp. 55–75.Google Scholar
  11. Feller, M. & J. P. Kimmins, 1979. Chemical characteristics of small streams near Haney in southwestern British Columbia. Water Resource Res. 15: 247–258.Google Scholar
  12. Friberg, F., C. Otto & B. S. Svenson, 1980. Effects of acidification on the dynamics of allochthonous leaf material and benthic invertebrate communities in running waters. In: Drablos, D. & A. Tollan (eds.). Ecological impact of acid precipitation. SNSF, Oslo, pp. 304–305.Google Scholar
  13. Giberson, D. J. & R. J. Hall, 1988. Seasonal variation in faunal distribution within the sediments of a Canadian shield stream, with emphasis on responses to spring floods. Can. J. Fish. aquat. Sci. 45: 1994–2002.Google Scholar
  14. Haines, R. A., 1981. Acidic precipitation and its consequences for aquatic ecosystems: a review. Trans. Am. Fish. Soc. 110: 669–707.CrossRefGoogle Scholar
  15. Hall, R. J., C. T. Driscoll & G. E. Likens, 1987. Importance of hydrogen ions and aluminum regulating the structure and function of stream ecosystems: an experimental test. Freshwat. Biol. 18: 17–43.Google Scholar
  16. Hall, R. J., C. T. Driscoll, G. E. Likens & J. M. Pratt, 1985. Physical, chemical and biological consequences of episodic aluminum additions to a stream ecosystem. Limnol. Oceanogr. 30: 212–220.Google Scholar
  17. Hall, R. J. & F. P. Ide, 1987. Evidence of acidification effects on stream insect communities in central Ontario between 1937 & 1985. Can. J. Fish. aquat. Sci. 44: 1652–1657.Google Scholar
  18. Hall, R. J., G. E. Likens, S. B. Fiance & G. R. Hendry, 1980. Experimental acidification of a stream in the Hubbard Brook Experimental Forest, New Hampshire. Ecology 61: 976–989.Google Scholar
  19. Hall, R. J., J. M. Pratt & G. E. Likens, 1982. Effects of experimental acidification on macroinvertebrate drift density in a mountain stream. Wat. Air Soil Pollut. 18: 273–287.Google Scholar
  20. Hopkins, P. S., K. W. Kratz & S. D. Cooper, 1989. Effects of an experimental acid pulse on invertebrates in a high altitude Sierra Nevada stream. Hydrobiol. 171: 45–58.Google Scholar
  21. Klinka, K. & L. E. Lowe, 1975. Organic constituents of forest humus layers in the Coastal Western Hemlock biogeoclimatic zone of British Columbia in relation to forest ecosystems. 1. Proximate analysis. B.C. Forest Serv., Victoria. Res. Note 74. 16 pp.Google Scholar
  22. Mackay, R. J. & K. Kersey, 1985. A preliminary study of aquatic insect communities in acid streams near Dorset, Ontario. Hydrobiologia 122: 3–11.Google Scholar
  23. McWilliams, P., D. Brown, G. Howells & W. Poole, 1980. Physiology of fish in acid waters. In: Drablos, D. & A. Tollan (eds.). Ecological impact of acid precipitation. SNSF, Oslo, pp. 282–283.Google Scholar
  24. Mundie, J. H., 1971. Sampling benthos and substrate materials down to 50 microns in size, in shallow streams. J. Fish. Res. Bd. Can. 28: 849–860.Google Scholar
  25. National Research Council of Canada, 1981. Acidification in the Canadian aquatic environment: scientific criteria for assessing the effects of acidic deposition in aquatic ecosystems. Environmental Secretariat, NRCC, Ottawa. Publ. No. 18475.Google Scholar
  26. Okland, J. & K. A. Okland, 1986. Effects of acid deposition on benthic animals in lakes and streams. Experimentia 42: 471–486.Google Scholar
  27. Ormerod, S. J., P. Boole, C. P. McCahon, N. S. Weatherley, D. Pascoe & R. W. Edwards, 1987. Short-term experimental acidification of a Welsh stream: comparing the biological effects of hydrogen ions and aluminum. Freshwat. Biol. 17: 341–356.Google Scholar
  28. Otto, C. & B. J. Svenson, 1983. Properties of acid brown water streams in south Sweden. Arch. Hydrobiol. 99: 15–36.Google Scholar
  29. Roddick, J. A., 1965. Vancouver, North Coquitlam and Pitt Lake map areas, British Columbia: with special emphasis on the evolution of the plutonic rocks. Geol. Survey Canada, Mem. 335. 276 pp.Google Scholar
  30. Schindler, D. W., 1988. Effects of acid-rain on fresh-water ecosystems. Science 239: 149–157.Google Scholar
  31. Schindler D. W., K. H. Mills, D. F. Malley, D. L. Findlay, J. A. Shearer, I. J. Davis, M. A. Turner, G. A. Linsey & D. R. Cruikshank, 1985. Long-term ecosystem stress: the effect of years of experimental acidification on a small lake. Science 228: 1395–1401.Google Scholar
  32. Stumm, W. & J. J. Morgan, 1970. Aquatic chemistry. Wiley Interscience, New York.Google Scholar
  33. Sullivan, M. A. & S. C. Samis, 1988. Assessment of acidification potential of selected Lower Mainland and Vancouver Island, British Columbia streams. Can. Tech. Rep. Fish. Aquat. Sci. No. 1599.Google Scholar
  34. Swarts, F. A., W. A. Dunstan & J. E. Wright, 1978. Genetic and environmental factors involved in increased resistance of brook trout to sulfuric acid solutions and mild acid polluted waters. Trans. Am. Fish. Soc. 107: 651–677.CrossRefGoogle Scholar
  35. Valentine, K. W. G. & L. M. Lavkulich, 1978. The soil orders of British Columbia. In: Valentine, K. W. G., P. N. Sprout, T. E. Baker & L. M. Lavkulich (eds.). The soil landscape of British Columbia. B.C. Ministry Envir., Victoria, B.C., pp. 67–95.Google Scholar
  36. Waters, T. F., 1972. The drift of stream insects. Ann. Rev. Ent. 17: 253–272.CrossRefGoogle Scholar
  37. Welch, E. B., D. E. Spyridakis & T. Smayda, 1986. Temporal chemical variability in acid sensitive high elevation lakes. Wat. Air Soil Pollut. 31: 35–44.Google Scholar
  38. Zischke, J. A., F. W. Arthur, K. J. Nordie, R. O. Hermanutz, D. A. Standen & T. P. Henry, 1983. Acidification effects on macroinvertebrates and fathead minnows (Pimephales promelas) in outdoor experimental channels. Wat. Res. 17: 47–63.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • David P. Bernard
    • 1
  • William E. Neil
    • 1
  • Locke Rowe
    • 1
  1. 1.Department of Zoology, 6270 University BoulevardUniversity of British ColumbiaVancouverCanada

Personalised recommendations