Advertisement

Hydrobiologia

, Volume 203, Issue 1–2, pp 35–44 | Cite as

Predominance of picoplankton and nanoplankton in eutrophic Calder Lake

  • John D. Wehr
Article

Abstract

A study was conducted to examine factors regulating the biomass of algal picoplankton in Calder Lake, a small eutrophic lake in southern New York state. A particular focus was a current paradigm which suggests that larger cells may dominate in nutrient-rich waters, while smaller cells may predominate only in oligotrophic waters. Over two years, phytoplankton biomass consisted predominantly (74% on average) of very small organisms; nanoplankton (<20 to 2 µm: 39%) and picoplankton (<2 µm to 0.2 µm: 35%), despite the presence of surface blooms of colonial cyanobacteria (Microcystis aeruginosa, Anabaena limnetica), and dense metalimnetic populations of the dinoflagellate Ceratium hirundinella. This dimictic system is characterized by relatively high levels of total P (max = 85, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara% aaaa!3702!\[\bar x\] = 9.7 µg P/L), inorganic P (max = 26, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara% aaaa!3702!\[\bar x\] = 4.5 µg P/L), and total inorganic N (max = 285, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara% aaaa!3702!\[\bar x\] = 85 µg P/L), but larger forms were rarely the most abundant. Unlike some marine systems, greater abundance of algal picoplankton was not associated with deeper strata (low light), or warmer temperatures. Data suggest that midsummer nutrient limitation, especially P-limitation, favors the development of pico- and nanoplankton in the limnetic zone of eutrophic lakes.

Key words

phytoplankton microbial ecology nutrient limitation algal picoplankton eutrophic lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association, 1985. Standard methods for the analysis of water and wastewater. 16th Edn. A.P.H.A., Washington, D.C.Google Scholar
  2. Bruno, S. T. & J. J. A. McLaughlin, 1977. The nutrition of the freshwater dinoflagellate Ceratium hirundinella. J. Protozool. 24: 548–553.Google Scholar
  3. Caron, D. A., F. R. Pick & D. R. S. Lean, 1985. Chroococcoid cyanobacteria in Lake Ontario: vertical and seasonal distributions during 1982. J. Phycol. 21: 171–175.Google Scholar
  4. Chang, V. T.-P., 1980. Zwei neue Synechococcus-Arten aus dem Zürichsee. Schweiz. Z. Hydrol. 42: 247–254.Google Scholar
  5. Craig, S. R., 1984. Productivity of algal picoplankton in a small meromictic lake. Int. Ver. Limnol. Verhandl. 22: 351–354.Google Scholar
  6. Currie, D. J. & J. Kalff, 1984. A comparison of the abilities of freshwater algae to acquire and retain phosphorus. Limnol. Oceanogr. 29: 298–310.Google Scholar
  7. Drews, G., H. Prauser & D. Uhlmann, 1961. Massenvorkommen von Synechococcus plankticus nov. spec., einer solitären, planktischen Cynaophycee, in einen Abwasserteich. Arch. Microbiol. 39: 101–115.Google Scholar
  8. Eisenreich, S. J., R. T. Bannerman & D. E. Armstrong, 1975. A simplified phosphorus analysis technique. Envir. Lett. 9: 43–53.Google Scholar
  9. Ellis, B. K. & J. A. Stanford, 1982. Comparative photoheterotrophy, and photolithotrophy in a eutrophic reservoir and an oligotrophic lake. Limnol. Oceanogr. 27: 440–454.Google Scholar
  10. Fahnenstiel, G. L., L. Sicko-Goad, D. Scavia & E. F. Stoermer, 1986. Importance of picoplankton in Lake Superior. Can. J. Fish. Aquat. Sci. 43: 235–240.Google Scholar
  11. Gelin, C. & W. Ripl, 1978. Nutrient decrease and response of various phytoplankton size fractions following the restoration of Lake Trummen, Sweden. Arch. Hydrobiol. 81: 339–367.Google Scholar
  12. Glover, H. E., 1985. The physiology and ecology of the marine cyanobacterial genus Synechococcus. Adv. aquat. Microbiol. 3: 49–107.Google Scholar
  13. Hecky, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33 (4, part 2): 796–822.Google Scholar
  14. Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.Google Scholar
  15. Lean, D. R. S., 1973. Phosphorus dynamics in lake water. Science 179: 678–679.Google Scholar
  16. Lean, D. R. S. & E. White, 1983. Chemical and radiotracer measurements of phosphorus uptake by lake plankton. Can. J. Fish. aquat. Sci. 40: 147–155.Google Scholar
  17. Li, W. K. W., 1986. Experimental approaches to field measurements: methods and interpretation. In: T. Platt & W. K. W. Li (Eds.), Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 251–286.Google Scholar
  18. Lorenzen, C. J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.Google Scholar
  19. Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water analysis: some revised methods for limnologists. Freshwat. Biol. Ass., U.K. Sci. Publ. No. 36. 120 pp.Google Scholar
  20. Paerl, H. W., 1977. Ultraphytoplankton biomass and production in some New Zealand lakes. N.Z. J. Mar. Freshwater. Res. 11: 297–305.Google Scholar
  21. Paerl, M. W. & L. A. Mackenzie, 1977. A comparative study of the diurnal carbon fixation patterns of nannoplankton and net plankton. Limnol. Oceanogr. 22: 732–738.Google Scholar
  22. Prepas, E. E., M. E. Dunnigan & A. M. Trimbee, 1988. Comparison of in situ estimates of chlorophyll a obtained with Whatman GF/L and GF/C glassfiber filters in mesotrophic to hypereutropic lakes. Can. J. Fish. aquat. Sci. 45: 910–914.Google Scholar
  23. Rhee, G.-Y. & I. J. Gotham, 1980. Optimum N: P ratios and coexistence of planktonic algae. J. Phycol. 16: 486–489.Google Scholar
  24. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.Google Scholar
  25. Sieburth, J., McN., V. Smetacek & J. Lenz, 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256–1263.Google Scholar
  26. Stockner, J. G., 1988. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33 (4, part 2): 765–775.Google Scholar
  27. Stockner, J. G. & N. J. Antia, 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary approach. Can. J. Fish. aquat. Sci. 43: 2472–2503.Google Scholar
  28. Suttle, C. A. & P. J. Harrison, 1988. Ammonium and phosphate uptake rates, N: P supply ratios, and evidence for N and P limitation in some oligotrophic lakes. Limnol. Oceanogr. 33: 186–202.Google Scholar
  29. Utermöhl, H., 1958. Zur vervollkommnung der quantitativen Phytoplankton-Methodik. Int. Ver. Limnol. Mitt. 9: 1–38.Google Scholar
  30. Waterbury, J. B., S. W. Watson, F. W. Valois & D. G. Franks, 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In: T. PLatt & W. K. W. Li (Eds.) Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sci. 214: 71–120.Google Scholar
  31. Wehr, J. D., L. M. Brown & K. O'Grady, 1987. Highly specialized nitrogen metabolism in a freshwater phytoplankter, Chrysochromulina breviturrita. Can. J. Fish. aquat. Sci. 44: 736–742.Google Scholar
  32. Wetzel, R. G., 1983. Limnology. 2nd Edn Saunders, Philadelphia, PA.Google Scholar
  33. Wilkinson, L., 1987. SYSTAT: The system for statistics. Systat Inc., Evanston, IL.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • John D. Wehr
    • 1
  1. 1.Calder Ecology CenterFordham UniversityArmonkUSA

Personalised recommendations