Advertisement

Hydrobiologia

, Volume 203, Issue 1–2, pp 15–28 | Cite as

The dynamic aspect of coarse particulate organic matter (CPOM) on the sediment surface of a second order stream free of debris dams (RITRODAT-LUNZ study area)

  • Gernot Bretschko
Article

Abstract

The importance of allochthonous organic matter for low order streams is described. Oberer Seebach is a second order stream, draining an uninhabitated and densly forrested catchment. Because of flood control the channel is free of debris dams since more than a century. The study site is characterized. Main emphasis is laid on the riparian vegetation and the distribution of dry and overflown channel areas in space and time. Amounts of leaf material, deposited on the sediment surface of the channel are significantly larger during defoliation (20 days) and shortly afterwards (‘accumulation period’, 6.64 (110 days) and 29.42 g m2 DW (133 days, mean of five years) for wet and dry areas, respectively) than during the rest of the year (‘intermediate period’, 0.98 and 3.94 g m2 (mean of five years) for wet and dry areas, respectively). Woody debris is too scarce to increase the retention capacity. Deposition of leaf material depends on the interaction of input (wind-drift and bank run off, 124 and 85 g m2 for the accumulation- and intermediate period, respectively), discharge regime and the relationship between dry and wet channel areas. Periodically inundated areas increase the retention capacity of the stream channel and are comparable with the interrelationship between stream and floodplain.

Key words

Low order stream allochthonous CPOM retention capacity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilby, R. E., 1981. Role of organic debris dams in regulating the export of dissolved and particulate matter from a forested watershed. Ecology 62: 1234–1243.Google Scholar
  2. Bilby, R. E. & G. E. Likens, 1980. Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61: 1107–1113.Google Scholar
  3. Bretschko, G., 1983. Die Biozönosen der Bettsedimente von Fliefißgewässern — ein Beitrag der Limnologie zu naturnahen Gewässerregulierung. — BM f. Land- und Forstwirtschaft, Wien, 161 pp.Google Scholar
  4. Bretschko, G., M. Leichtfried & H. Moser, 1987. Eintrag und Transport partikulärer organischer Substanz (POM) in alpinen Bächen unter besonderer Berücksichtigung der Hydrographie von Ausleitungsstrecken. Abschlupßbericht MAB-Projekt 5/14, Austria, 82 pp.Google Scholar
  5. Cummins, K. W., 1974. Structure and Function of Stream Ecosystems. Bio Science 24: 631–641.Google Scholar
  6. Cummins, K. W., G.L. Spengler, G.M. Ward, R. M. Speaker, R. W. Ovink, D. C. Mahan & R. L. Mattingly, 1980. Processing of confined and naturally entrained leaf litter in a woodland ecosystem. Limnol. Oceanogr. 25: 952–957.Google Scholar
  7. Cummins, K. W., G. W. Minshall, J. R. Sedell, C. E. Cushing & R. C. Petersen, 1984. Stream ecosystem theory. Verh. Int. Ver. Limnol. 22: 1818–1827.Google Scholar
  8. Dudgeon, D., 1987. Three contrasting land-water interactive systems in Hong-Kong. Arch. Hydrobiol. Beih. 28: 417–420.Google Scholar
  9. Iversen, T. M., J. Thorup & J. Skriver, 1982. Inputs and transformation of allochthonous particulate organic matter in a headwater stream. Holarct. Ecol. 5: 10–19.Google Scholar
  10. Kaushik, N. K. & H. B. N. Hynes, 1968. Experimental study on the role of autumn shed leaves in aquatic environments. J. Ecol. 52: 229–243.Google Scholar
  11. Kaushik, N. K. & H. B. N. Hynes, 1971. The fate of the dead leaves that fall into streams. Arch. Hydrobiol. 68: 465–515.Google Scholar
  12. King, J. M., M.-P. Henshall-Howard, J. A. Day & B. R. Davies, 1987. Leaf-pack dynamics in a southern African mountain stream. Freshw. Biol. 18: 325–340.Google Scholar
  13. Kraml, G. & C. Kampichler, 1983. Vergleichende Untersuchungen an zwei Biotopen in der Seeau (Seehof). Jber. Biol. Stn Lunz 6: 151–194.Google Scholar
  14. Ladle, M., 1981. Organic detritus and its role as a food-source in chalk streams. FBA Annual Report 50: 30–37.Google Scholar
  15. Leichtfried, M., 1986. Räumliche und zeitliche Verteilung der partikulären organischen Substanz (POM — particulate organic matter) in einem Gebirgsbach als Energiebasis der Biozönose. Dissertation, Univ. Wien. 360 pp.Google Scholar
  16. Leopold, L. B., M. G. Wolman & J. P. Miller, 1964. Fluvial Processes in Geomorphology. W. H. Freeman, San Francisco, 522 pp.Google Scholar
  17. Likens, G. E., R. H. Whittaker, F. H. Borman, J. S. Eaton & T. G. Siccama, 1979. The Hubbard Brook Ecosystem Study: Forest Nutrient Cycling and Element Behaviour. Ecology 60: 203–220.Google Scholar
  18. Malicky, H., 1971. Vorversuche über die Rolle des allochthonen pflanzlichen Materials im Lunzer Untersee. Anz. math. naturw. Klasse der ÖAW, 1971/4: 1–4.Google Scholar
  19. Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, E. C. Cushing & R. L. Vannote, 1983. Interbiome Comparison of Stream Ecosystem Dynamics. Ecol. Monogr. 53: 1–25.Google Scholar
  20. Naiman, R. J., D. M. Mc Dowell & B. S. Farr, 1984. The influence of beaver (Castor canadensis) on the production dynamics of aquatic insects. Verh. int. Ver. Limnol. 22: 1801–1810.Google Scholar
  21. Nelson, D. J. & D. C. Scott, 1962. Role of detritus in the productivity of a rock-outcrop community in a Piedmont stream. Limnol. Oceanogr. 7: 396–413.Google Scholar
  22. Schmid, P. E., 1987. Die zeitliche und räumliche Dynamik der Chironomiden in einem Gebirgsbach. Dissertation, Univ. Wien, 396 pp.Google Scholar
  23. Sedell, R. J. & J. L. Frogatt, 1984. Importance of streamside forests to large rivers: The isolation of the Willamette River, Oregon, U.S.A., from its floodplain by snagging and streamside forest removal. Verh. int. Ver. Limnol. 22: 1828–1834.Google Scholar
  24. Speaker, R., K. Moore & S. Gregory, 1984. Analysis of the process of retention of organic matter in stream ecosystems. Verh. int. Ver. Limnol. 22: 1835–1841.Google Scholar
  25. Triska, F. J., 1984. Role of wood debris in modifying channel geomorphology and riparian areas of large lowland river under pristine conditions: A historical case study. Verh. int. Ver. Limnol. 22: 1876–1892.Google Scholar
  26. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The River Continuum Concept. Can. J. Fish. aquat. Sci. 37: 130–137.Google Scholar
  27. Welcomme, R. L., 1985. River fisheries. FAO, Fish. Techn. Pap. 262: 330 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Gernot Bretschko
    • 1
  1. 1.Biologische Station LunzInstitut für Limnologie der Österreichischen Akademie der WissenschaftenLunz/See

Personalised recommendations