Skip to main content
Log in

Histochemical observations on the salmonids Salmo salar L. and Salmo trutta L. and the ephemeropterans Baetis rhodani (Pict.) and Ecdyonurus venosus (Fabr.) following a simulated episode of acidity in an upland stream

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Salmonids (Salmo salar, Salmo trutta) and mayflies (Baetis rhodani, Ecdyonurus venosus) which had been exposed to simulated episodes of low pH, and low pH with elevated aluminium, were examined histochemically for the presence of aluminium and mucus. The control fish and mayflies and those exposed to low pH did not stain for aluminium, although increased mucus production was demonstrated in fish gills. Trout and salmon exposed to aluminium at low pH exhibited extensive aluminium and mucus coating of the secondary gill lamellae. No mucus was produced by mayflies but aluminium was apparent on all parts of the body. Mean aluminium concentrations of digested fish gills were 2950 and 3050 μg g−1 dry wt. for trout and salmon respectively, whilst for whole specimens of B. rhodani and E. venosus values were 1 200 and 3 175 μg g−1 dry wt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Almer, B., W. Dickson, C. Ekstrom, E. Hornstrom & V. Miller, 1974. Effects of acidification on Swedish Lakes. Ambio. 3: 30–36.

    Google Scholar 

  • Ashley, L. M., 1970. Action of iron salts in solution on goldfish, Prog. Fish. Cult. 32: 109.

    Google Scholar 

  • Baker, J. P. & C. L. Schofield, 1980. Aluminium toxicity to fish as related to acid precipitation and Adirondack surface water quality. In D. Drablos & A. Tollan (eds), Ecological Impact of Acid Precipitation. S.N.S.F., Oslo: 292–293.

    Google Scholar 

  • Baker, J. P. & C. L. Schofield, 1982. Aluminium toxicity to fish in acidic waters. Wat. Air Soil Pollut.18: 289–309.

    Google Scholar 

  • Baker, J. T. P., 1969. Histological and electron microscopical observations on copper poisoning in the winter flounder (Pseudopleuronectes americanus). J. Fish Res. Bd Can. 26: 2785–2793.

    Google Scholar 

  • Beamish, R. J. & H. H. Harvey, 1972. Acidification of the La Cloche Mountain Lakes, Ontario and resulting fish mortalities. J. Fish Res. Bd Can. 29: 1131–1143.

    Google Scholar 

  • Daye, P. G. & E. T. Garside, 1976. Histopathologic changes in superficial tissues of brook trout, Salvelinus fontinalis (Mitchell) exposed to acute and chronic levels of pH. Can. J. Zool. 54: 2140–2155.

    Google Scholar 

  • Denton, J., A. J. Freemont & J. Ball, 1984. Detection and distribution of aluminium in bone. J. Clin. Pathol. 37: 136–142.

    Google Scholar 

  • Dickson, W., 1975. The acidification of Swedish Lakes. Rep. Inst. E. W. Res. Drottningholm 54: 8–21.

    Google Scholar 

  • Driscoll, C. T., J. P. Baker, J. J. Bisogni & C. L. Schofield, 1980. Effect of aluminium speciation on fish in dilute acidified water. Nature 284: 161–164.

    Google Scholar 

  • Engbolm, E. & P.-E. Lingdell, 1984. The mapping of short-term acidification with the help of biological pH indicators. Rep. Inst. F. W. Res. Drottningholm 61: 60–68.

    Google Scholar 

  • Eisler, R. & G. R. Gardner, 1973. Acute toxicology to an estuarine teleost of mixtures of cadmium, copper and zinc. J. Fish Biol. 5: 131–142.

    Google Scholar 

  • Eisler, R., 1974. Radiocadmium exchange with seawater by Fundulus heteroclitus (L.) (Pisces: Cyprinodontidae) J. Fish Biol. 6: 601–612.

    Google Scholar 

  • Fivelstad, S. & H. Leivestad, 1984. Aluminium toxicity to Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.): Mortality and Physiological response. Rep. Inst. F. W. Res. Drottningholm 61: 69–77.

    Google Scholar 

  • Friberg, F., C. Otto & B. S. Svensson, 1980. Effects of acidification on the dynamics of allochthonous leaf material and benthic invertebrate communities of running waters. In D. Drablos & A. Tollan (eds), Ecological Impact of Acid Precipitation. S.N.S.F., Oslo: 304–305.

    Google Scholar 

  • Gardner, G. R. & P. P. Yevich, 1970. Histological and hematological responses of an estuarine teleost to cadmium. J. Fish Res. Bd. Can. 27: 2185–2196.

    Google Scholar 

  • Haines, T. A., 1981. Acidic precipitation and its consequences for aquatic ecosystems: a review. Trans. am. Fish. Soc. 110: 669–707.

    Google Scholar 

  • Hall, R. J., J. M. Pratt & G. E. Likens, 1982. Effects of experimental acidification on macroinvertebrate drift diversity in a mountain stream. Wat. Air Soil Pollut. 18: 273–288.

    Google Scholar 

  • Hem, J. D., 1968. Graphical methods for studies of aqueous aluminium hydroxide, fluoride and sulphate complexes. U.S. Geol. Surv. Wat. Supply Paper 1827-B.

  • Hendrey, G. & R. Wright, 1976. Acid precipitation in Norway: effects on aquatic fauna. J. Great Lakes Res. 2: (Suppl. 1) 192–207.

    Google Scholar 

  • Herrmann, J. & K. G. Andersson, 1986. Aluminium impact on respiration of lotic mayflies at low pH. Wat. Air Soil Pollut. 30: 703–709.

    Google Scholar 

  • Hughes, G. M., 1985. Comparative studies of respiration as a guide to the selection of bio-indicators. Symp. Biomonitoring State Environ. 126–141.

  • Jagoe, C. H. & T. A. Haines, 1983. Alterations in gill epithelial morphology of yearling Sunapee trout exposed to acute acid stress. Trans. am. Fish Soc. 112: 689–695.

    Google Scholar 

  • Janssen, R. G. & D. J. Randall, 1975. The effect of changes in pH and pCO2 in blood and water on breathing in rainbow trout Salmo gairdneri. Resp. Physiol. 25: 235–245.

    Google Scholar 

  • Jones, J. R. E., 1939. The relation between the electrolytic solution pressures of the metals and their toxicity to the stickle-back (Gasterosteus aculeatus). J. Exp. Biol. 16: 425–439.

    Google Scholar 

  • Kimmel, W. G., D. J. Murphey, W. E. Sharpe & D. R. De Walle, 1985. Macroinvertebrate community structure and detritus processing rates in two southwestern Pennsylvania streams acidified by atmospheric deposition. Hydrobiologia 124: 97–102.

    Google Scholar 

  • Leivestad, H. & I. P. Muniz, 1976. Fish kill at low pH in a Norwegian river. Nature 259: 391–392.

    Google Scholar 

  • Leivestad, H., 1982. Physiological effects of acid stress on fish. In T. A. Haines & R. E. Johnson (eds), Acid Rain/Fisheries. Proc. Int. Symp. on Acidic rain and and fishery impacts on northeastern North America. American Fisheries Soc: Maryland: 157–164.

    Google Scholar 

  • Lind, C. J. & J. D. Hem, 1975. Effects of organic solutes on chemical reactions of aluminium. U.S. Geol. Surv. Wat. Supply Pap. 1827-G.

  • Lloyd, R., 1960. The toxicity of zinc sulphate to rainbow trout. Ann. appl. Biol. 48: 84–94.

    Google Scholar 

  • Lloyd, R. & D. H. M. Jordan, 1964. Some factors affecting the resistance of rainbow trout (Salmo gairdneri Richardson) to acid waters. Int. J. Air. Wat. Pollut. 8: 393–403.

    Google Scholar 

  • Muniz, I. P. & H. Leivestad, 1980. Toxic effects of aluminium on the brown trout Salmo trutta L. In D. Drablos & A. Tollan (eds), Ecological impact of Acid Precipitation. S.N.S.F., Oslo: 320–321.

    Google Scholar 

  • Neville, C. M., 1985. Physiological response of juvenile rainbow trout (Salmo gairdneri), to acid and aluminium - prediction of field responses from laboratory data. Can. J. Fish. aquat. Sci. 42: 2004–2019.

    Google Scholar 

  • Norton, R. L. & J. R. Orpwood, 1980. Multi-element analysis using an inductively coupled plasma spectrophotometer. Part I. Commissioning and preliminary evaluation of performance. Water Research Centre, Technical Report 141.

  • Ormerod, S. J., P. Boole, C. P. McCahon, N. S. Weatherley, D. Pascoe & R. W. Edwards, 1987. Short-term experimental acidification of a Welsh Stream: comparing the biological effects on hydrogen ions and aluminium. Freshwat. Biol. 17: 341–356.

    Google Scholar 

  • Orpwood, B., 1979. Concentration techniques for trace elements: a review. Water Research Centre, Technical Report 102.

  • Pascoe, D. & N. A. M. Shazili, 1986. Episodic Pollution — A comparison of brief and continuous exposure of rainbow trout to cadmium. Ecotoxicology & Environmental Safety 12: 189–192.

    Google Scholar 

  • Plonka, A. C. & W. H. Neff, 1969. Mucopolysaccharide histochemistry of gill epithelial secretions in brook trout exposed to acid pH. Proc. PA. Acad. Sci. 43: 53–55.

    Google Scholar 

  • Rosseland, B. O., 1980. Physiological responses to acid water in fish. 2. Effect of acid water on metabolism and gill ventilation in brown trout Salmo trutta L. and brook trout Salvelinus fontinalis Mitchell. In. D. Drablos & A Tollan (eds), Ecological Impact of Acid Precipitation. S.N.S.F., Oslo: 348–349.

    Google Scholar 

  • Schofield, C. L., 1976. Acid precipitation: effects on fish. Ambio 5: 228–230.

    Google Scholar 

  • Schofield, C. L. & J. R. Trojnar, 1980. Aluminium toxicity to brook trout (Salvelinus fontinalis) in acidified waters. In T. Y. Toribara, M. W. Miller & P. E. Morrow (eds), Polluted Rain. Plenum Press, New York: 341–363.

    Google Scholar 

  • Skidmore, J. F. & P. W. A. Tovell, 1972. Toxic effects of zinc sulphate on the gills of rainbow trout. Wat. Res. 6: 217–230.

    Google Scholar 

  • Stoner, J. H., A. S. Gee & K. R. Wade, 1984. The effects of acidification on the ecology of streams in the Upper Tywi Catchment in west Wales. Envir. Pollut. (Ser. A.) 35: 125–157.

    Google Scholar 

  • Townsend, C. R., A. G. Hildrew & J. Francis, 1983. Community structure in some southern English streams: the influence of physicochemical factors. Freshwat. Biol. 13: 521–544.

    Google Scholar 

  • Ultsch, G. R. & G. Gros, 1979. Mucus as a diffusion barrier to oxygen: possible role in O2 uptake at low pH in carp (Cyprinus carpio) gills. Comp. Biochem. Physiol. 62A: 685–689.

    Google Scholar 

  • West, R. H. & R. W. Williams, 1985. An automated method for the determination of sulphate by inductively coupled plasma emission spectroscopy. The Specialist. December 1985: 1–13.

  • Wingfield, C. A., 1939. The function of the gills of mayfly nymphs from different habitats. J. Exp. Biol. 16: 363–373.

    Google Scholar 

  • Wright, R. F. & E. Gjessing, 1976. Acid precipitation: changes in the chemical composition of lakes. Ambio 5: 219–223.

    Google Scholar 

  • Wright, R. F. & E. Snekvik, 1978. Acid precipitation: chemistry and fish populations in 700 lakes in southernmost Norway. Verh. int. Ver. Limnol. 20: 765–775.

    Google Scholar 

  • Wright, R. F., R. Harriman, A. Henriksen, B. Morrison & L. A. Caines, 1980. Acid lakes and streams in the Galloway area, southwestern Scotland. In D. Drablos & A. Tollan (eds), Ecological Impact of Acid Acid Precipitation. S.N.S.F., Oslo: 248–250.

    Google Scholar 

  • Zischke, J. A., J. W. Arthur, K. J. Nordlie, R. O. Hermanutz, D. A. Standen & T. P. Henry, 1983. Acidification effects on macroinvertebrates and fathead minnows (Pimephales promelas) in outdoor experimental channels. Wat. Res. 17: 47–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mc Cahon, C.P., Pascoe, D. & Mc Kavanagh, C. Histochemical observations on the salmonids Salmo salar L. and Salmo trutta L. and the ephemeropterans Baetis rhodani (Pict.) and Ecdyonurus venosus (Fabr.) following a simulated episode of acidity in an upland stream. Hydrobiologia 153, 3–12 (1987). https://doi.org/10.1007/BF00005500

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00005500

Key words

Navigation