Skip to main content
Log in

Observations on the electric organ discharge of two skate species (Chondrichthyes: Rajidae) and its relationship to behaviour

  • Full paper
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

The electric organ discharge (EOD) of the little skate,Raja erinacea and winter skate,R. ocellata was recorded both from isolated individuals and from small groups using methods that allowed for the identification of individuals producing EODs. Pulse duration, train lengh, frequency, and pulse patterns are characterized and correlated with behaviour. The two species,R. erinacea andR. ocellata, were found to have characteristically different EOD pulse durations of 70 ms and 217 ms respectively. Isolated skates rarely discharged whereas groups of skates were found to discharge regularly. The EOD was evoked by tactile prodding, physical contact with other skates and electrical stimulation. Skates also discharged reflexively in response to an artificially induced head-positive DC stimulus, sine wave and monopolar square pulses. During approach and contact, skates responded to each other with interacting EOD displays. EOD interaction and pulse duration differences between other species suggest a possible intra-specific communication function of the EOD inRaja.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Akoev, G.N., O.B. Ilyinsky & P.M. Zadan. 1976. Physiological properties of electroreceptors of marine skates. Comp. Biochem. Physiol. 53: 201–209.

    Google Scholar 

  • Albe-Fessard, D. 1950. Les caractères de la décharge des poissons électriques. Arch. Sci. Physiol. 4: 299-334.

    Google Scholar 

  • Albe-Fessard, D. & A. Couceiro. 1950. Constitution élémentaire de la décharge naturelle de l'organe électrique de la Raie. J. Physiol. et Pathol. 42: 529–530.

    Google Scholar 

  • Bauer, R. 1972. High electrical discharge frequency during aggressive behaviour in a mormyrid fish,Gnathonemus petersii. Experientia 28: 669–670.

    Google Scholar 

  • Belbenoit, P., P. Moller, J. Serrier & S. Push. 1979. Ethological observations on the electric organ discharge behaviour of the electric catfish,Malapterurus electricus (Pisces). Behav. Ecol. Sociobiol. 4: 321–330.

    Google Scholar 

  • Bennett, M.V.L. 1971. Electric organs. pp. 347–491. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 5, Academic Press, New York.

    Google Scholar 

  • Bennett, M.V.L. 1961. Modes of operation of electric organs. Ann. N.Y. Acad. Sci. 94: 458–509 Bennett, M.V.L., M. Wurzel & H. Grundfest. 1961. The electrophysiology of electric organs of marine electric fishes. I. Properties of electroplaques ofTorpedo nobiliana. J. Gen. Physiol. 44: 757–804.

    Google Scholar 

  • Bigelow, H.B. & W.C. Schroeder. 1953a. Fishes of the Gulf of Maine. U.S. Fish Wild. Ser. Fish. Bull. 53: 1–577.

    Google Scholar 

  • Bigelow, H.B. & W.C. Schroeder. 1953b. Fishes of the western north Atlantic. pp. 176–185. In: Memoir Sears Foundation for Marine Research, Yale University, New Haven.

    Google Scholar 

  • lack-Cleworth, P. 1970. The role of electrical discharges in the non-reproductive social behavior ofGymnotus carapo L. (Gymnotidae, Pisces). Anim. Behav. Monog. 31: 1–77.

    Google Scholar 

  • Bratton, B. & J. Ayers. 1982. Electric organ discharge patterns in the skate (Rajidae) and their relation to behavior. Soc. Neurosci. Abstr. 8: 609.

    Google Scholar 

  • Bray, R.N. & M.A. Hixon. 1978. Night-shocker: Predatory behavior of the Pacific electric ray (Torpedo california). Science 200: 333–334.

    Google Scholar 

  • Brock, L.G., R.M. Eccles & R.D. Keynes. 1953. The discharge of individual electroplates inRaia clavata. J. Physiol. 122: 4–6.

    PubMed  Google Scholar 

  • Bromm, B., K. Hensel & K. Nier. 1975. Response of the ampullae of Lorenzini to static combined electric and thermal stimuli inScyliorhinus canicula. Experientia 31: 615–618.

    PubMed  Google Scholar 

  • Ewart, J.C. 1888. On the structure of the electric organ ofRaia circularis. Phil. Trans. Roy. Soc. 179: 410–416.

    Google Scholar 

  • Ewart, J.C. 1892. The electric organ of the skate. Observations on the structure, relations, progressive development, and growth of the electric organ of the skate. Phil. Trans. Roy. Soc. 183: 389–420.

    Google Scholar 

  • Heiligenberg, W. & J. Bastian. 1984. The electric sense of weakly electric fish. Ann. Rev. Physiol. 46: 561–583.

    Google Scholar 

  • Ishiyama, R. 1958. Studies on the rajid fishes (Rajidae) found in the waters around Japan. J. Shimonoseki Coll. Fish. 7: 193–395.

    Google Scholar 

  • Kalmijn, A.J. 1971. The electric sense of sharks and rays. J. Exp. Biol. 55: 371–383.

    PubMed  Google Scholar 

  • Kalmijn, A. 1982. Electric and magnetic field detection in elasmobranch fishes. Science 218: 916–918.

    PubMed  Google Scholar 

  • Kramer, B. 1974. Electric organ discharge interaction during interspecific agonistic behaviour in freely swimming mormyrid fish. J. Comp. Physiol. 93: 203–235.

    Google Scholar 

  • Lissmann, H.W. 1958. On the function and evolution of electric organs in fish. J. Exp. Biol. 35: 156–189.

    Google Scholar 

  • Lissmann, H.W. 1963. Electric location by fishes. Sci. Amer. 208: 50–59.

    Google Scholar 

  • Mikhailenko, N.A. 1971. Biological significance and dynamics of electrical discharges in weak electrical fishes of the Black Sea. Zool. Zh. 50: 1347–1352. (in Russian).

    Google Scholar 

  • Moller, P. 1970. Communication in weakly electric fish,Gnathonemus niger (Mormyridae) 1. Variation of electric organ discharge (EOD) frequency elicited by controlled electric stimuli. Anim. Behav. 18: 768–786.

    Google Scholar 

  • Montgomery, J.C. 1984a. Frequency response characteristics of primary and secondary neurons in the electrosensory system of the thornback ray. Comp. Biochem. Physiol. 79: 189–195.

    Google Scholar 

  • Montgomery, J.C. 1984b. Noise cancellation in the electrosensory system of the thornback ray; common mode rejection of input produced by the animal's own ventilatory movement. J. Comp. Physiol. 155: 103–111.

    Google Scholar 

  • Mortenson, J. & R.H. Whitaker. 1973. Electric discharge in freeswimming female winter skates (Raja ocellata). Amer. Zool. 13: 1266.

    Google Scholar 

  • Murray, R.W. 1962. The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation. J. Exp. Biol. 39: 119–128.

    PubMed  Google Scholar 

  • Obara, S. & M.V.L. Bennett. 1972. Mode of operation of ampullae of Lorenzini of the skate,Raja. J. Gen. Physiol. 60: 534–557.

    PubMed  Google Scholar 

  • Sanderson, J.B. & F. Gotch. 1888. On the electrical organ of the skate. J. Physiol. (London) 9: 137–166.

    Google Scholar 

  • Sanderson, J.B. & F. Gotch. 1889. On the electrical organ of the skate, part II. J. Physiol. (London) 10: 259–278.

    Google Scholar 

  • Szabo, T. 1955. Quelques précisions sur le noyau de commande centrale de la décharge électrique chez la Raie (Raja clavata). J. Physiol. (Paris) 47: 283–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratton, B.O., Ayers, J.L. Observations on the electric organ discharge of two skate species (Chondrichthyes: Rajidae) and its relationship to behaviour. Environ Biol Fish 20, 241–254 (1987). https://doi.org/10.1007/BF00005295

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00005295

Key words

Navigation