Skip to main content

Form changes in the sea bass, Dicentrarchus labrax (Moronidae: Teleostei), after acclimation to freshwater: an analysis using shape coordinates

Synopsis

Morphological changes in the sea bass, Dicentrarchus labrax (Perciformes: Moronidae), were investigated after an experimental acclimation trial to freshwater. The sea bass is an euryhaline species occurring in the Mediterranean and west Atlantic from 30° N to 55° N. Part of the offspring of a pool of breeders was acclimated to freshwater at 9 months of age while maintaining the original stock in marine water. The effect of acclimation to freshwater over the entire form of the fish was studied through geometric morphometrics (shape coordinates). Changes in the form were shown graphically as landmark displacements though age classes 7,12, 15, 19 and 24 months and were discussed in the light of integrated growth. A significantly faster growth in freshwater was detected. Shape coordinates analyzed through multivariate statistics show that significant differences in shape arise after acclimation to freshwater. Moreover, the uniform component of shape change reveals a major effect of stretching or compression perpendicular to the body axis which is common and conservative in both trials. Differences are discussed in terms of selection and ecophenotypism.

This is a preview of subscription content, access via your institution.

References cited

  1. Allegrucci, G., C. Fortunato, S. Cataudella & V. Sbordoni. 1994. Acclimation to fresh water of the sea bass: evidence of selective mortality of alloyzme genotypes. pp. 486–502. In: A.R. Beaumont(ed.) Genetics and Evolution of Aquatic Organisms, Chapman & Hall, London.

    Google Scholar 

  2. Barlow, G. 1961. Causes and significance of morphological variation in fishes. Syst. Zool. 10: 105–117.

    Google Scholar 

  3. Barnabè, G. 1980. Expose synoptique des donnees biologiques sur le loup ou bar Dicentrachus labrax (Linné, 1758). FAO Fish. Synopsis 126, Rome. 70 pp.

  4. Bookstein, F.L. 1989. ‘Size and shape’: a comment on semantics. Syst. Zool. 38: 173–180.

    Google Scholar 

  5. Bookstein, F.L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge. 435 pp.

    Google Scholar 

  6. Bookstein, F.L. 1996, Standard formula for the uniform shape component in landmark data. pp. 153–168. In: L.F. Marcus, M. Corti, A. Loy, G. Naylor & D. Slice(ed.) Advances in Morphometrics, Plenum Press, New York.

    Google Scholar 

  7. Bookstein, F.L., B. Chernoff, R. Elder, J. Humphries, G. Smith & R. Strauss. 1985. Morphometrics in evolutionary biology. Special publ. no. 15, Academy of Natural Sciences of Philadelphia, Philadelphia. 277 pp.

    Google Scholar 

  8. Cataudella, S., G. Allegrucci, P. Bronzi, E. Cataldi, C. Cioni, M. Corti, D. Crosetti, D. De Merich, C. Fortunato, L. Garibaldi, A. Loy, L. Sola & V. Sbordoni. 1991. Multidisciplinary approach to the optimization of sea bass (Dicentrarchus labrax) rearing in freshwater. 1. Basic morpho-physiology and osmoregulation. Aquaculture Europe '91, International Conference, Dublin, Ireland. EAS Special Publication 14: 55–57.

  9. Chernoff, B., J.V. Conner & C.F. Bryan. 1981. Systematics of the Menidia beryllina complex (Pisces: Atherinidae) from the Gulf of Mexico and its tributaries. Copeia 1981: 319–336.

    Google Scholar 

  10. Currens, K.P., C.S. Sharpe, R. Hjort, C.B. Schreck & H.W. Li, 1989. Effects of different feeding regimes on the morphometrics of chinook salmon (Onchorhynchus tshawytscha) and rainbow trout (O. mykiss). Copeia 1989: 689–695.

    Google Scholar 

  11. Hubbs, C.L. 1926. The structural consequence of modifications of the developmental rate in fishes, considered in reference to certain problems of evolution. Amer. Nat. 60: 57–81.

    Google Scholar 

  12. Huxley, J.S. 1932. Problems of relative growth. Methuen & Co., London. 276 pp.

    Google Scholar 

  13. Kennedy, M. & P. Fitzmaurice. 1972. The biology of the bass, Dicentrarchus labrax, in Irish waters. J. Mar. Biol. Ass. UK 52: 557–597.

    Google Scholar 

  14. Marcus, L.E, E. Bello & A. Garcia-Valdecasas. 1993. Contributions to morphometrics. Monografias, Museo Nacional de Ciencias Naturales, Madrid. 264 pp.

    Google Scholar 

  15. Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge. 797 pp.

    Google Scholar 

  16. Mitton, J.B. & M.C. Grant. 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann. Rev. Ecol. Syst. 15: 479–499.

    Google Scholar 

  17. Olson, E.C. & R.L. Miller. 1958. Morphological integration. University of Chicago Press, Chicago. 317 pp.

    Google Scholar 

  18. Reyment, R.A. 1991. Multidimensional paleobiology. Pergamon Press. Oxford 377 pp.

    Google Scholar 

  19. Roche, H., K. Chaar & G. Pèréss. 1989. The effect of a gradual decrease in salinity on the significant constituents of tissue in the sea bass (Dicentrarchus labrax Pisces). Comp. Biochem. Physiol. 93a: 785–789.

    Google Scholar 

  20. Rohlf. F.J. & F.L. Bookstein (ed.). 1991. Proceedings of the Michigan Morphometric Workshop, University of Michigan, Special Publ. no. 2, Ann. Arbor. 380 pp.

  21. Rohlf, F.J., L.F. Marcus. 1993. A revolution in morphometrics. T. R.E. E. 8: 129–132..

    Google Scholar 

  22. Rohlf, F.J. & D. Slice. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39: 40–59..

    Google Scholar 

  23. Rohlf, F.J., A. Loy & M. Corti. 1996. Morphometric analysis of Old World Talpidae (Mammalia, Insectivora) using partial-warp scores. Syst. Biol. (in press).

  24. Schmalhausen, I.I. 1949. Factors of evolution: the theory of stabilizing selection. Blakiston, Philadelphia. 327 pp.

    Google Scholar 

  25. Simpson, A.L., N.B. Metcalfe & J.E. Thorpe. 1992. A simple nondestructive biometric method for estimating fat levels in Atlantic salmon, Salmon salar L.. parr. Aqua. Fish. Manag. 23: 23–29.

    Google Scholar 

  26. Weatherley, A.H. & H.S. Gill. 1987. The biology of fish growth. Academic Press, London. 443 pp.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Corti, M., Loy, A. & Cataudella, S. Form changes in the sea bass, Dicentrarchus labrax (Moronidae: Teleostei), after acclimation to freshwater: an analysis using shape coordinates. Environ Biol Fish 47, 165–175 (1996). https://doi.org/10.1007/BF00005039

Download citation

Key words

  • Geometric morphometrics
  • Morphometrics
  • Ecophenotypism
  • Phenotypic plasticity