Environmental Biology of Fishes

, Volume 37, Issue 3, pp 297–306 | Cite as

Otolith size changes related with body growth, habitat depth and temperature

  • Antoni Lombarte
  • Jordi Lleonart
Article

Synopsis

Size variation in the sagittal otoliths of six species of the genus Merluccius, and five species of the genus Coelorhynchus was compared, using a digital image processing system and multivariate analysis. It is proposed that otolith growth occurs under dual regulation, overall shape is regulated genetically, and otolith size is influenced by environmental conditions. The decline of temperature with increasing habitat depth seems to be an important factor regulating the growth of otoliths in carbonate-saturated levels. The relative growth of the otoliths is usually negatively allometric.

Keywords

Coelorhynchus Merluccius Morphometry Fishes Gadiformes Allometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Aldrich, J.C. 1989. The world beyond the species, an argument for greater definition in experimental work. pp. 3–8. In: J.C. Aldrich (ed.) Phenotypic Responses and Individuality in Aquatic Ectotherms, Japaga, Ashford.Google Scholar
  2. Arnaud, P.M. 1974. Contribution à la bionomie marine benthique des régions antarctiques et subantarctiques (Terre Adelie). Bull. Inst. Océanogr. Monaco 66: 3–24.Google Scholar
  3. Beamish, R.J. 1979. Differences in the age of Pacific hake (Merluccius productus) using whole otoliths and sections of otoliths. J. Fish. Res. Board Can. 36: 141–151.Google Scholar
  4. Boehlert, G.W. 1985. Using objective criteria and multiple regression models for age determination in fishes. U.S. Fish. Bull. 83: 103–117.Google Scholar
  5. Botha, L. 1971. Growth and otolith morphology of the Cape hakes Merluccius capensis Cast. and Merluccius paradoxus Franca. Invest. Rep. Div. Sea Fish. S. Afr. 97: 1–32.Google Scholar
  6. Campana, S.E. 1990. How reliable are growth back-calculations based on otoliths? Can. J. Fish. Aquat. Sci. 47: 2219–2227.Google Scholar
  7. Casselman, J.M. 1990. Growth and relative size of calcified structures of fish. Trans. Amer. Fish. Soc. 119: 673–688.CrossRefGoogle Scholar
  8. Dawson, W.A. 1991. Otolith measurements as a method of identifying factors affecting first-year growth and stock separation of mackerel (Scomber scombrus L.). J. Cons. int. Explor. Mer. 47: 303–317.Google Scholar
  9. Frost, K.J. & U.F. Lowry. 1981. Trophic importance of some marine gadids in northern Alaska and their body-otolith size relationship. U.S. Fish. Bull. 79: 187–192.Google Scholar
  10. Gaemers, P.A.M. 1976. New concepts in the evolution of the Gadidae (Vertebrate, Pisces), based on their otoliths. Mededelingen van de Werkgroep voor Tertiaire and Kwartaire Geologie 13: 3–22.Google Scholar
  11. Gauldie, R.W 1991. The morphology and periodic structures of the otolith of the chinook salmon (Oncorhynchus tshawytscha), and temperature-dependent variation in otolith microscopic growth increment width. Acta Zool. 72: 159–179.CrossRefGoogle Scholar
  12. Gauldie, R.W, E.J. Graynoth & J. Illingworth. 1980. The relationships of the iron content of some fish otoliths to temperature. Comp. Biochem. Physiol. A. 66: 19–24.CrossRefGoogle Scholar
  13. Ho, J. 1990. Phylogeny and biogeography of hakes (Merluccius; Teleostei): a cladistic analysis. U.S. Fish. Bull. 88: 95–104.Google Scholar
  14. Inada, T. 1981. Studies on the merlucciid fishes. Bull. Far Seas Fisheries Research Laboratory 18: 1–172.Google Scholar
  15. Kalish, J.M. 1989. Otoliths microchemistry: validation of the effects of physiology, age and environment on otolith composition. J. Exp. Mar. Biol. Ecol. 132: 151–178.CrossRefGoogle Scholar
  16. Lefebvre, J. 1976. Introduction aux analyses statistiques multidimensionelles. Masson, Paris. 259 pp.Google Scholar
  17. Lombarte, A. 1992. Changes in otolith area: sensory area ratio with body size and depth. Env. Biol. Fish. 33: 405–410.CrossRefGoogle Scholar
  18. Lombarte, A. & A. Castellón. 1991. Inter and intraspecific otolith variability in the genus Merluccius as determined by image analysis. Can. J. Zool. 69: 2442–2449.CrossRefGoogle Scholar
  19. Lombarte, A. & B. Morales-Nin. 1989. Crecimiento de Nezumia aequalis y Coelorhynchus fasciatus (Pisces: Maerouridae) en aguas de Namibia. Coll. scient. Pap. int. Commn SE. Atl. Fish. 16: 191–198.Google Scholar
  20. Lombarte, A. J. Rucabado, J. Matallanas & D. Lloris. 1991. Taxonomia numerica de Notothenidae en base a la forma de los otolitos. Sci. Mar. 55: 413–418.Google Scholar
  21. Macpherson, E. & C.M. Duarte. 1991. Bathymetric trends in demersal size: is there a general relationship? Mar. Ecol. Prog. Ser. 71: 103–112.Google Scholar
  22. Masó, M. & M. Manríquez. 1987. Preliminary hydrological results of the ‘Spanish Namibian Environmental Cruise’ SNEC-II. Coll. scient. Pap. int. Commn SE. Atl. Fish. 14: 113–128.Google Scholar
  23. Menon, M.O. 1950. The use of bones other than otoliths in determining the age and growth rate of fishes. J. Cons. Explor. Mer. 16: 311–335.Google Scholar
  24. Messieh, S.N. 1972. Use otoliths in identifying herring stocks in the Southern Gulf of St. Lawrence and adjacent waters. J. Fish. Res. Board Can. 29: 1113–1118.Google Scholar
  25. Milliman, J.D. 1974. Marine carbonates. Springer Verlag, Berlin. 375 pp.Google Scholar
  26. Morales-Nin, B. 1987. The influence of environmental factors on microstructure of otoliths of three demersal fish species caught off Namibia. pp. 225–262. In: A.I.L. Payne, J.A. Gulland & K.H. Brink (ed.) The Benguela and Comparable Ecosystems, S. Afr. J. mar. Sci. 5.Google Scholar
  27. Mosegaard, H., H. Svedang & K. Taberman. 1988. Uncoupling of somatic and otolith growth rates in Arctic char (Salvelinus alpinus) as an effect of differences in temperature response. Can. J. Fish. Aquat. Sci. 45: 1514–1524.CrossRefGoogle Scholar
  28. Mugiya, Y. 1964. Calcification in fish and shell-fish. III. Seasonal occurrence of a prealbumin fraction, corresponding to the period of opaque zone formation in the otolith. Bull. Jap. Soc. Sci. Fish. 30: 955–967.Google Scholar
  29. Nolf, D. & E. Steurbaut. 1989. Evidence from otoliths for establishing relationships within gadiforms. pp. 89–112. In: D.M. Cohen (ed.) Papers on the Systematics of Gadiform Fishes, Science Series, Natural History Museum of Los Angeles County 32.Google Scholar
  30. Platt, C. & A.N. Popper. 1981. Fine structure and function of the ear. pp. 3–38. In: W.N. Tavolga, A.N. Popper & R.R. Fay (ed.) Hearing and Sound Communication in Fishes, Springer Verlag, New York.Google Scholar
  31. Radtke, R.L. & T.E. Targett. 1984. Rhythmic structural and chemical patterns in otoliths of the Antarctic fish Notothenia larsenk their application to age determination. Polar Biol. 3: 203–210.CrossRefGoogle Scholar
  32. Saetersdal, G.S. 1953. The haddock in Norwegian waters. II. Methods in age and growth investigations. Rep. Norwegian Fish. Marine Invest. 10: 1–46.Google Scholar
  33. Salat, J. & J. Font. 1987. Water mass structure near and offshore the Catalan coast during the winters of 1982 and 1983. Ann. Geophys. 198 (5B): 49–54.Google Scholar
  34. Shannon, L.V. 1985. The Benguela ecosystem. Part I. Evolution of the Benguela, physical features and processes. Oceanogr. Mar. Biol. Ann. Rev. 23: 105–182.Google Scholar
  35. Simkiss, K. 1974. Calcium metabolism of fish in relation to ageing pp. 1–12. In: T.B. Bagenal (ed.) Ageing of Fish, Unwin Brothers, Old Woking.Google Scholar
  36. Templeman, W. & H.J. Squire. 1956. Relationships of otolith lengths and weights in the haddock Melanogrammus aeglefinus (L.) to the rate of growth of the fish. J. Fish. Res. Board Can. 13: 467–487.Google Scholar
  37. Turón, J.M., J. Rucabado, D. Lloris & E. Macpherson. 1986. Datos pesqueros de las expediciones realizadas en aguas de Namibia durante Ins años 1981 a 1984 (Benguela III a Benguela VII y Valdivia I). Datos Informativos Inst. Inv. Pesq. 17: 1–344.Google Scholar
  38. Vermeij, G.J. 1978. Biogeography and adaptation patterns of marine life. Harvard University Press, Cambridge. 332 pp.Google Scholar
  39. Wilson Jr., R.R. 1985. Depth-related changes in sagitta morphology in six macrourid fishes of the Pacific and Atlantic oceans. Copeai 1985: 1011–1017.Google Scholar
  40. Woodhead, P.M.S. 1968. Seasonal changes in the calcium content of the blood of arctic cod. J. mar. biol. U.K. 48: 81–91.CrossRefGoogle Scholar
  41. Yefanov, V.N. & L.O. Khorevin. 1979. Distinguishing populations of pink salmon Oncorhynchus gorbuscha, by the size of their otoliths. J. Ichthyol. 19: 142–145.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Antoni Lombarte
    • 1
  • Jordi Lleonart
    • 1
  1. 1.Institut de Ciències del Mar (CSIC), Passeig Nacional s/nBarcelona, CataloniaSpain

Personalised recommendations