Skip to main content
Log in

Current knowledge on potential health benefits of Spirulina

Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Spirulina is a microscopic filamentous alga that is rich in proteins, vitamins, essential amino acids, minerals and essential fatty acids like γ-linolenic acid (GLA). It is produced commercially and sold as a food supplement in health food stores around the world. Up to very recently, the interest in Spirulina was mainly in its nutritive value. Currently, however, numerous people are looking into the possible therapeutic effects of Spirulina. Many pre-clinical studies and a few clinical studies suggest several therapeutic effects ranging from reduction of cholesterol and cancer to enhancing the immune system, increasing intestinal lactobacilli, reducing nephrotoxicity by heavy metals and drugs and radiation protection. This paper presents a critical review of some published and unpublished data on therapeutic effects of Spirulina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Archer DL, Glinsmann WH (1985) Intestinal infection and malnutrition initiate AIDS. Nutrition Research 5: 19.

    Article  Google Scholar 

  • Becker EW, Jakover B, Luft D, Schmuelling RM (1986) Clinical and biochemical evaluations of the alga Spirulina with regard to its application in the treatment of obesity: a double-blind cross-over study. Nutr. Rep. Int. 33: 565–574.

    Google Scholar 

  • Boudene C (1976) Evaluation of long term toxicity on rats with Spirulina. Ann. Nutr. Aliment. 30: 577–588.

    Google Scholar 

  • Cannell R, Owsianka AM, Walker JM (1988) Results of a large-scale screening programme to detect antibacterial activity from freshwater algae. Br. phycol. J. 23: 41–44.

    Google Scholar 

  • Chamorro-Cevalos G (1980) Toxicological research on the alga Spirulina. UNIDO, UF/MEX/78/048.

  • Ciferri O, Tiboni O (1985) The biochemistry and industrial potential of Spirulina. Ann. Rev. Microbiol. 39: 503–526.

    Article  CAS  Google Scholar 

  • Dainippon Ink & Chemicals (DIC) (1983) Antitumoral agents containing phycobillin. Japanese Patent #58-65216, inventors: N. Iijima, N. Fujii & H. Shimamatsu; assignees: Dainippon Ink & Chemicals & Tokyo Stress Foundation, Apr. 18, 6 pp.

  • Devi MA, Venkataraman LV (1983) Hypocholestemic effect of bluegreen algae Spirulina platensis in albino rats. Nutr. Rep. Int. 28: 519–530.

    Google Scholar 

  • Flores E, Wolk CP (1986) Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains. Arch. Microbiol. 145: 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Fukino H, Takagi Y, Yamane Y (1990) Effect of Spirulina (S. platensis) on the renal toxicity induced by inorganic mercury and cisplatin. Eisei Kagaku 36: 5.

    Google Scholar 

  • Gustafson KR, Cardellina JH II, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson GM, Boyd MR (1989) AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J. Natl. Cancer Inst. 81: 1254–1258.

    PubMed  CAS  Google Scholar 

  • Hayashi O, Inaba Y, Matsunami K, Okuwaki Y, Kato T (1992) Paper presented at the 46th Annual Meeting of The Japanese Society of Nutrition and Food Science, Kurashiki, Japan.

  • Hoppe HA, Levring T, Tanaka Y, (1979) Marine algae in pharmaceutical science. Walter de Gruyter, Berlin, 807 pp.

    Google Scholar 

  • Horrobin DF (1981a) The possible roles of prostaglandin E1 and of essential fatty acids in mannia, depression and alcoholism. Progr. Lipids 20: 539–541.

    Article  CAS  Google Scholar 

  • Horrobin DF (1981b) Loss of delta-6-desaturase activity as a key factor in aging. Med. Hypotheses 7: 1211–1220.

    Article  PubMed  CAS  Google Scholar 

  • Horrobin DF, Huang YS (1983) Schizophrenia: the role of abnormal essential fatty acid and prostaglandin metabolism. Med. Hypotheses 10: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Huang YS (1982) Most biological effects of zinc deficiency corrected by GLA. Atherosclerosis 41: 193–208.

    Article  PubMed  CAS  Google Scholar 

  • Iwata K, Inayama T, Kato T (1987) Effects of Spirulina platensis on fructose-induced hyperlipidemia in rats. J. Jap. Soc. Nutr. Food Sci. 40: 463–467.

    Google Scholar 

  • Iwata K, Inayama T, Kato T (1990) Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. J. Nutr. Sci. Vitaminol. 36: 165–171.

    PubMed  CAS  Google Scholar 

  • Jassby A (1988) Spirulina: a model for microalgae as human food. In Lembi C, Waaland JR (eds), Algae and Human Affairs. Cambridge University Press, 149–179.

  • Johnson P, Shubert LE (1986) Availability of iron to rats from Spirulina, a blue-green alga. Nutr. Res. 6: 85–94.

    Article  CAS  Google Scholar 

  • Kataoka N, Misaki A (1983) Glycolipids isolated from Spirulina maxima: structure and fatty acid composition. Agric. Biol. Chem. 47: 2349–2355.

    CAS  Google Scholar 

  • Kato T, Takemoto K, Katayama H, Kuwabara Y (1984) Effects of Spirulina (Spirulina platensis) on dietary hypercholesterolemia in rats. J. Jap. Soc. Nutr. Food Sci. 37: 323–332.

    Google Scholar 

  • Kernoff PBA (1977) Antithrombotic potential of DGLA in man. Br. Med. J. 2: 1441–1444.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel SL (1982) Suppression of chronic inflamation by evening primrose oil. Progr. Lipids 20: 885–888.

    Article  Google Scholar 

  • Nagao K., Takai Y, Ono M (1991) Exercises of growing mice, and the effect of the intake of Spirulina platensis upon the hapten-specific immune response. Sci. Phys. Power 40: 187–194.

    Google Scholar 

  • Nakaya N, Honma Y, Goto Y (1988) Cholesterol lowering effect of Spirulina Nutr. Rep. Int. 37: 1329–1337.

    CAS  Google Scholar 

  • Noda H, Amano H, Arashima K, Hashimoto S, Nishizawa K (1989a) Studies on the antitumor activity of marine algae. Nippon Suisan Gakkaishi 55: 1259–1268.

    Google Scholar 

  • Noda H, Amano H, Arashima K, Hashimoto S, Nishizawa K (1989b) Antitumor activity of polysaccharides and lipids from marine algae. Nippon Suisan Gakkaishi 55: 1265–1271.

    Google Scholar 

  • Patterson GM, Baldwin CL, Bolis CM, Caplan FR, Karuso H, Larsen LK, Levine IA, Moore RE, Nelson CS, Tschappat KD, Tuang GD, Furusawa E, Furusawa S, Norton TR, Raybcurne RB (1991) Antineoplastic activity of cultured blue-green algae (Cyanophyta). J. Phycol. 27: 530–536.

    Article  Google Scholar 

  • Peto R (1981) Can dietary beta carotene materially reduce human cancer rates? Nature 290: 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Qishen P, Coleman A, Baojiang G (1989) Radioprotective effect of extract from Spirulina platensis in mouse bone marrow cells studied by using the micronucleus test. Toxicology Lett. 48: 165–169.

    Article  CAS  Google Scholar 

  • Schwartz JL, Sklar G (1987) Regression of experimental hamster cancer by beta carotene and algae extracts. J; Oral Maxillorfac. Surg. 45: 510–515.

    Article  CAS  Google Scholar 

  • Schwartz JL, Sklar G, Reid S, Trickler D (1988) Prevention of experimental oral cancer by extracts of Spirulina-Dunaliella algae. Nutr. Cancer 11: 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Shekelle RB (1981) Dietary vitamin A and risk of cancer in the Western Electric Study. Lancet 8257: 1185–1189.

    Article  Google Scholar 

  • Takai Y, Hosoyamada Y, Kato T (1991) Effect of water-soluble and water insoluble fractions of Spirulina over serum lipids and glucose resistance of rats. J. Jap. Soc. Nutr Food Sci. 44: 273–277.

    Google Scholar 

  • Tsuchihashi N, Watanabe T, Takai Y (1987) Effect of Spirulina platensis on caecum content in rats. Bull. Chiba Hygiene College, Chiba, Japa,. 5: 27–30.

    Google Scholar 

  • Tudge C (1981) Why we could all need the evening primrose. New Scientist 506: 23.

    Google Scholar 

  • Vadaddi KS, Horrobin DF (1979) Weight loss produced by evening primrose oil administration. IRSC Med. Sci. 7: 52.

    Google Scholar 

  • Venkataraman LV, Becker EW (1985) Biotechnology and utilization of algae-The Indian experience. Sharada Press, Mangalore, India, 114–115.

    Google Scholar 

  • Yamane Y, Fukino H, Icho T, Kato T, Shimamatsu H (1988) Effect of Spirulina (Spirulina platensis) on the renal toxicity induced by inorganic mercury and para-aminophenol. Summary of Abstracts: 108th Annual Conference of the Pharmaceutical Society of Japan, p. 58.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belay, A., Ota, Y., Miyakawa, K. et al. Current knowledge on potential health benefits of Spirulina . J Appl Phycol 5, 235–241 (1993). https://doi.org/10.1007/BF00004024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00004024

Key words

Navigation