Advertisement

Journal of Applied Phycology

, Volume 7, Issue 1, pp 3–15 | Cite as

Microalgae as sources of pharmaceuticals and other biologically active compounds

  • Michael A. Borowitzka
Article

Abstract

In the last decade the screening of microalgae, especially the cyanobacteria (blue-green algae), for antibiotics and pharmacologically active compounds has received ever increasing interest. A large number of antibiotic compounds, many with novel structures, have been isolated and characterised. Similarly many cyanobacteria have been shown to produce antiviral and antineoplastic compounds. A range of pharmacological activities have also been observed with extracts of microalgae, however the active principles are as yet unknown in most cases. Several of the bioactive compounds may find application in human or veterinary medicine or in agriculture. Others should find application as research tools or as structural models for the development of new drugs. The microalgae are particularly attractive as natural sources of bioactive molecules since these algae have the potential to produce these compounds in culture which enables the production of structurally complex molecules which are difficult or impossible to produce by chemical synthesis.

Key words

antibiotic antiviral antifungal antibacterial antialgal pharmacologically active screening culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong JE, Janda KE, Alvarado B, Wright AE (1991) Cytotoxin production by a marine Lyngbya strain (cyanobacterium) in a large-scale laboratory bioreactor. J. appl. Phycol. 3: 277–282.Google Scholar
  2. Bagchi SN, Palod A, Chauhan VS (1990) Algicidal properties of a bloom-forming blue-green alga, Oscillatoria sp. J. bas. Microbiol. 30: 21–29.Google Scholar
  3. Baker JT (1984) Seaweeds in pharmaceutical studies and applications. Hydrobiologia 116/117: 29–40.CrossRefGoogle Scholar
  4. Barchi JJ, Moore RE, Furusawa E, Patterson GML (1983) Identification of cytotoxin from Tolypothrix byssoidea as tubercidin. Phytochem. 22: 2851–2852.CrossRefGoogle Scholar
  5. Barchi JJ, Moore RE, Patterson GML (1984) Acutiphycin and 20,21-didehydroacutiphycin, new antineoplastic agents from the cyanophyte Oscillatoria acutissima. J. am. Chem. Soc. 106: 8193–8197.CrossRefGoogle Scholar
  6. Bates SS, Defreitas ASW, Milley JE, Pocklington R, Quilliam MA, Smith JC, Worms J (1991) Controls on domoic acid production by the diatom Nitzschia pungens f multiseries in culture — nutrients and irradiance. Can. J. Fish. aquat. Sci. 48: 1136–1144.Google Scholar
  7. Bates SS, Worms J, Smith JC (1993) Effects of ammonium and nitrate on growth and domoic acid production by Nitschia pungens in batch culture. Can. J. Fish. aquat. Sci. 50: 1248–1254.Google Scholar
  8. Berdy J (1989) The discovery of new bioactive microbial metabolites: Screening and identification. In Bushell ME (ed.), Bioactive Metabolites from Microorganisms. Elsevier, Amsterdam, 3–25.Google Scholar
  9. Berland BR, Bonin DJ, Cornu AL (1972) The antibacterial substances of the marine alga Stichochrysis immobilis (Chrysophyta). J. Phycol. 8: 383–392.CrossRefGoogle Scholar
  10. Bloor S, England RR (1991) Elucidation and optimization of the medium constituents controlling antibiotic production by the cyanobacterium Nostoc muscorum. Enzyme Microb. Technol. 13: 76–81.PubMedCrossRefGoogle Scholar
  11. Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA, Moore RE, Stewart JB, Patterson GML (1991) Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron 47: 7739–7750.CrossRefGoogle Scholar
  12. Borowitzka LJ, Borowitzka MA (1989a) β-Carotene (Provitamin A) production with algae. In Vandamme EJ (ed.), Biotechnology of Vitamins, Pigments and Growth Factors. Elsevier Applied Science, London, 15–26.Google Scholar
  13. Borowitzka LJ, Borowitzka MA (1989b) Industrial production: methods and economics. In Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific, London, 294–316.Google Scholar
  14. Borowitzka MA (1988a) Vitamins and fine chemicals. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge University Press, Cambridge, 153–196.Google Scholar
  15. Borowitzka MA (1988b) Microalgae as sources of essential fatty acids. Aust. J. Biotechnol. 1: 58–62.Google Scholar
  16. Borowitzka MA (1992) Algal biotechnology products and processes: Matching science and economics. J. appl. Phycol. 4: 267–279.CrossRefGoogle Scholar
  17. Burkiewicz K (1987) Active substances in the media after algae cultivation. Acta Physiol. Plant. 9: 211–217.Google Scholar
  18. Carmeli S, Moore RE, Patterson GML (1990) Tolytoxin and new scytophycins from three species of Scytonema. Lloydia 55: 1533–1542.Google Scholar
  19. Carmichael WW (1986) Algal toxins. Adv. Bot. Res. 6: 47–101.CrossRefGoogle Scholar
  20. Carmichael WW (1992) A review: Cyanobacteria secondary metabolites — the cyanotoxins. J. appl. Bact. 72: 445–459.Google Scholar
  21. Chauhan VS, Marwah JB, Bagchi SN (1992) Effect of an antibiotic from Oscillatoria sp on phytoplankters, higher plants and mice. New Phytol. 120: 251–257.CrossRefGoogle Scholar
  22. Chen DZX, Boland MP, Smillie MA, Klix H, Ptak C, Andersen RJ, Holmes CFB (1993) Identification of protein phosphatase inhibitors of the microcystin class in the marine environment. Toxicon 31: 1407–1414.PubMedCrossRefGoogle Scholar
  23. Chetsumon A, Fujieda K, Hirata K, Yagi K, Miura Y (1993a) Optimization of antibiotic production by the cyanobacterium Scytonema sp. TISTR 8208 immobilized on polyurethane foam. J. appl. Phycol. 5: 615–622.CrossRefGoogle Scholar
  24. Chetsumon A, Miyamoto K, Hirata K, Miura Y, Ikuta Y, Hamasaki A (1993b) Factors affecting antibiotic production in bioreactors with immobilized algal cells. Appl. Biochem. Biotechnol. 39: 573–586.Google Scholar
  25. Chrismadha T, Borowitzka MA (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J. appl. Phycol. 6: 67–74.CrossRefGoogle Scholar
  26. Cohen Z, Cohen S (1991) Preparation of eicosapentaenoic acid (EPA) concentrate from Porphyridium cruentum. JAOCS 68: 16–19.Google Scholar
  27. Craig R, Reichelt BY, Reichelt JL (1988) Genetic engineering of micro-algae. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge University Press, Cambridge, 415–455.Google Scholar
  28. Davison A, Rousseau E, Dunn B (1993) Putative anticarcinogenic actions of carotenoids-nutritional implications. Can. J. Physiol. Pharmacol. 71: 732–745.PubMedGoogle Scholar
  29. Dehro LH, Ward HB (1979) Antibacterial activity of freshwater green algae. Planta Med. 36: 375–378.Google Scholar
  30. De Cano MMS, De Mulé MCZ, De Caire GZ, De Halperin DR (1990) Inhibition of Candida albicans and Staphylococcus aureus by phenolic compounds from the terrestrial cyanobacterium Nostoc muscorum. J. appl. Phycol. 2: 79–81.CrossRefGoogle Scholar
  31. deSilva ED, Williams DE, Andersen RJ, Klix H, Holmes CFB, Allen TM (1992) Mutoporin, a potent protein phosphatase inhibitor isolated from the Papua New Guinea sponge Theonella swinhoei Gray. Tet. Lett. 33: 1561–1564.CrossRefGoogle Scholar
  32. DiNovi M, Trainor DA, Nakanishi K, Sanduja R, Alam M (1983) The structure of PB-1, an unusual toxin isolated from the red tide dinoflagellate Ptychodiscus brevis. Tet. Lett. 24: 855–858.CrossRefGoogle Scholar
  33. Douglas DJ, Bates SS (1992) Production of domoic acid, a neurotoxic amino acid, by an axenic culture of the marine diatom Nitzschia pungens f. multiseries Hasle. Can. J. Fish. aquat. Sci. 49: 85–90.CrossRefGoogle Scholar
  34. Duff DCB, Bruce DL, Antia NJ (1966) The antibacterial activity of marine planktonic algae. Can. J. Microbiol. 12: 877–884.PubMedGoogle Scholar
  35. Dunahay TG, Jarvis EE, Zeiler KG, Roessler PG, Brown LM (1992) Genetic engineering of microalgae for fuel production — scientific note. Appl. Biochem. Biotechnol. 34/35: 331–339.Google Scholar
  36. Faulkner DJ, He HH, Unson MD, Bewley CA (1993) New metabolites from marine sponges: Are symbionts important? Gaz. Chim. Ital. 123: 301–307.Google Scholar
  37. Fenical W (1993) Chemical studies of marine bacteria: Developing a new resource. Chem. Rev. 93: 1673–1683.CrossRefGoogle Scholar
  38. Findlay JA, Patil AD (1984) Antibacterial constituents of the diatom Navicula delognei. Lloydia 47: 815–818.Google Scholar
  39. Gerwick WH, Roberts MA, Proteau PJ, Chen JL (1994) Screening cultured marine microalgae for anticancer-type activity. J. appl. Phycol. 6: 143–149.CrossRefGoogle Scholar
  40. Gleason FK (1986) Cyanobacterin herbicide. U.S. Patent Number 4,626,271.Google Scholar
  41. Gleason FK, Case DE, Siprell KD, Magnuson TS (1986) Effect of the natural algicide, cyanobacterin, on a herbicide-resistant mutant of Anacystis nidulans R2. Plant Sci. 46: 5–10.CrossRefGoogle Scholar
  42. Glombitza KW, Koch M (1989) Secondary metabolites of pharmaceutical potential. In Cresswell RC, Rees TAV, Shah M (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific & Technical, Harlow, 161–238.Google Scholar
  43. Gregson JM (1986) Isolation and structure determination of the puwainaphycins A-D. MSc Thesis, University of Hawaii, Honolulu, 54 pp.Google Scholar
  44. Gromov BV, Vepritskiy AA, Titova NN, Mamkayeva KA, Alexandrova OV (1991) Production of the antibiotic cyanobacterin LU-1 by Nostoc lincka CALU 892 (Cyanobacterium). J. appl. Phycol. 3: 55–59.CrossRefGoogle Scholar
  45. Gross EM, Wolk CP, Juttner F (1991) Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella muscicola. J. Phycol. 27: 686–692.CrossRefGoogle Scholar
  46. Gustafson KR, Cardellina JH, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson KML, Boyd MR (1989) AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J. Nat. Cancer Ins 81: 1254–1258.Google Scholar
  47. Harder R, Opperman A (1953) Über antibiotische Stoffe bei den Grünalgen Stichococcus bacillaris und Protosiphon botryoides. Arch. Mikrobiol. 19. 398–401.PubMedCrossRefGoogle Scholar
  48. Hauman JH (1981) Is a plasmid(s) involved in the toxicity of Microcystis aeruginosa? In Carmichael WW (ed.), The water environment: algal toxins and health. Plenum Press, N.Y., 97–102.Google Scholar
  49. Helms GL, Moore RE, Niemczura WP, Patterson GML, Tomer KB, Gross ML (1988) Scytonemin A, a novel calcium antagonist from a blue-green alga J. Org. Chem. 53: 1298–1307.CrossRefGoogle Scholar
  50. Hille B (1975) The receptor for tetrodotoxin and saxitoxin: a structural hypothesis. Biophys. J. 15: 615–619.PubMedGoogle Scholar
  51. Holmes CFB, Borland MP (1993) Inhibitors of protein phosphatase-1 and -2A; two of the major serine/threonone protein phosphatases involved in cellular regulation. Curr. Opinion Struct. Biol. 3: 934–943.CrossRefGoogle Scholar
  52. Hoppe HA (1979) Marine algae and their products and constituents in pharmacy. In Hoppe HA, Levring T, Tanaka Y (eds), Marine Algae in Pharmaceutical Science. Walter de Gruyter, Berlin - New York, 25–119.Google Scholar
  53. Ikawa M, Sasner JJ (1990) The chemistry and physiology of algal toxins. In Akatsuka I (ed.), Introduction to Applied Phycology. SPB Academic Publishing, The Hague, 27–65.Google Scholar
  54. Ishibashi M, Moore RE, Patterson GML, Xu C, Clardy J (1986) Scytophycins, cytotoxic and antimycotic agents from the cyanophyte Scytonema pseudohofmanni. J. Org. Chem. 51: 5300–5306.CrossRefGoogle Scholar
  55. Kellam SJ, Walker JM (1989) Antibacterial activity from marine microalgae. Br. Phycol. J. 24: 191–194.Google Scholar
  56. Kindle KL, Sodeinde OA (1994) Nuclear and chloroplast transformation in Chlamydomonas reinhardtii — Strategies for genetic manipulation and gene expression. J. appl. Phycol. 6: 231–238.CrossRefGoogle Scholar
  57. Knubel G, Larsen LK, Moore RE, Levine IA, Patterson GML (1990) Cytotoxic, antiviral indolocarbazoles from a blue-green alga belonging to the Nostocaceae. J. Antibiot. 43: 1236–1239.PubMedGoogle Scholar
  58. Kobayashi A, Ishibashi M, Nakamura H, Ozumi Y, Yamasu T, Sasaki T, Hirata Y (1986) Amphidinolide-A, a novel antineoplastic macrolide from the marine dinoflagellate Amphidinium sp. Tet. Lett. 27: 5755–5758.CrossRefGoogle Scholar
  59. Kumar HD, Gorham PR (1975) Effects of acridine dyes and other substances on growth, lysis and toxicity of Anabaena flos-aquae NRC-44-1. Biochem. Physiol. Pflanzen 167: 473–487.Google Scholar
  60. Laguna MR, Villar R, Cadavid I, Calleja JM (1993a) Effects of extracts of Tetraselmis suecica and Isochrysis galbana on the central nervous system. Planta Med. 59: 207–214.PubMedGoogle Scholar
  61. Laguna MR, Villar R, Calleja JM, Cadavid I (1993b) Effects of Chlorella stigmatophora extract on the central nervous system. Planta Med. 59: 125–130.PubMedGoogle Scholar
  62. Lau AF, Siedlecki J, Anleitner J, Patterson GML, Caplan FR, Moore RE (1993) Inhibition of reverse transcriptase activity by extracts of cultured blue-green algae (Cyanophyta). Planta Med. 59: 148–151.PubMedGoogle Scholar
  63. Laycock MV, de Freitas ASW, Wright JLC (1989) Glutamate agonists from marine algae. J. appl. Phycol. 1: 113–122.CrossRefGoogle Scholar
  64. Lee YK, Low CS (1991) Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol. Bioengng 38: 995–1000.CrossRefGoogle Scholar
  65. Lincoln RA, Strupinski K, Walker JM (1990) Use of an isolated guinea-pig ileum assay to detect bioactive compounds in microalgal cultures. J. appl. Phycol. 2: 83–88.CrossRefGoogle Scholar
  66. Luu HA, Chen DZX, Magoon J, Worms J, Smith J, Holmes CFB (1993) Quantification of diarrhetic shellfish toxins and identification of novel protein phosphatase inhibitors in marine phytoplankton and mussels. Toxicon 31: 75–83.PubMedCrossRefGoogle Scholar
  67. Moore RE, Patterson GML, Mynderse JS, Barchi J, Norton TR, Furusawa E, Furusawa S (1986) Toxins from cyanophytes belonging to the Scytonemataceae. Pure appl. Chem. 58: 263–271.Google Scholar
  68. Moore RE, Cheuk C, Yang XQG, Patterson GML, Bonjouklian R, Smitka TA, Mynderse JS, Foster RS, Jones ND, Swartzendruber JK, Deeter JB (1987) Hapalindoles, antibacterial and antimycotic alkaloids from the cyanophyte Hapalosiphon fontinalis. J. org. Chem. 52: 1036–1043.CrossRefGoogle Scholar
  69. Moore RE, Patterson ML, Carmichael WW (1988) New pharmaceuticals from cultured blue-green algae. In Fautin DG (ed.), Biomedical Importance of Marine Organisms. California Academy of Sciences, San Francisco, 143–150.Google Scholar
  70. Morton SL, Bomber JW (1994) Maximizing okadaic acid content from Prorocentrum hoffmannianum Faust. J. appl. Phycol. 6: 41–44.CrossRefGoogle Scholar
  71. Nagai H, Satake M, Yasumoto T (1990) Antimicrobial activities of polyether compounds of dinoflagellate origins. J. appl. Phycol. 2: 305–308.CrossRefGoogle Scholar
  72. Norton RS, Wells RJ (1982) A series of chiral polybrominated biindoles from the blue-green marine algae Rivularia firma. Application of 13C NMR spin-lattice relaxation data and data and 13C-1H coupling constants to structure elucidation. J. am. Chem. Soc. 104: 3628–3635.CrossRefGoogle Scholar
  73. Numata A, Takahashi C, Ito Y, Takada T, Kawai K, Usami Y, Matsumura E, Imachi M, Ito T, Hasegawa T (1993) Communesins, cytotoxic metabolites of a fungus isolated from a marine alga Tet. Lett. 34: 2355–2358.CrossRefGoogle Scholar
  74. Okuyama H (1992) Minimum requirements of n-3 and n-6 essential fatty acids for the function of the central nervous system and for the prevention of chronic disease. Proc. Soc exp. Biol. Med. 200: 174–176.PubMedGoogle Scholar
  75. Okuzumi J, Nishino H, Murakoshi M, Iwashima A, Tanaka Y, Yamane T, Fujita Y, Takahashi T (1990) Inhibitory effects of fucoxanthin, a natural carotenoid, on N-myc expression and cell cycle progression in human malignant tumor cells. Cancer Lett. 55: 75–81.PubMedCrossRefGoogle Scholar
  76. Patterson GML, Bolis CM (1993) Regulation of scytophycin accumulation in cultures of Scytonema ocellatum. 1. Physical factors. Appl. Microbiol. Biotech. 40: 375–381.CrossRefGoogle Scholar
  77. Patterson GML, Carmeli S (1992) Biological effects of tolytoxin (6-hydroxy-7- O-methylscytophycin B), a potent bioactive metabolite from cyanobacteria. Arch. Microbiol. 157: 406–410.PubMedCrossRefGoogle Scholar
  78. Patterson GML, Baldwin CL, Bolis CM, Caplan FR, Karuso H, Larsen LK, Levine IA, Moore RE, Nelson CS, Tschappat KD, Tuang GD, Furusawa E, Furusawa S, Norton TR, Raybourne RB (1991) Antineoplastic activity of cultured blue-green algae (Cyanophyta). J. Phycol. 27: 530–536.CrossRefGoogle Scholar
  79. Patterson GML, Baker KK, Baldwin CL, Bolis CM, Caplan FR, Larsen LK, Levine IA, Moore RE, Nelson CS, Tschappat KD, Tuang GD, Boyd MR, Cardellina JH, Collins RP, Gustafson KR, Snader KM, Weislow OS, Lewin RA (1993a) Antiviral activity of cultured blue-green algae (Cyanophyta). J. Phycol. 29: 125–130.Google Scholar
  80. Patterson GML, Smith CD, Kimura LH, Britton BA, Carmeli S (1993b) Action of tolytoxin on cell morphology, cytoskeletal organization, and actin polymerization. Cell Motil. Cytoskel. 24: 39–48.CrossRefGoogle Scholar
  81. Pedersen M, DaSilva EJ (1973) Simple brominated phenols in the bluegreen alga Calothrix brevissima West. Planta 115: 83–96.CrossRefGoogle Scholar
  82. Pesando D (1990) Antibacterial and antifungal activities of marine algae. In Akatsuka I (ed.), Introduction to Applied Phycology. SPB Academic Publishing, The Hague, 3–26.Google Scholar
  83. Pesando D, Gnassia-Barelli M (1979a) Antifungal properties of some marine planktonic algae. In Hoppe HA, Levring T, Tanaka Y (eds), Marine Algae in Pharmaceutical Science. Walter de Gruyter, Berlin, 461–471.Google Scholar
  84. Pesando D, Gnassia-Garelli M (1979b); Partial characterization of a specific antibiotic, antifungal substance isolated from the marine diatom Chaetoceros lauderi Ralfs CC In Hoppe HA, Levring T, Tanaka Y (eds), Marine Algae in Pharmaceutical Science. Walter de Gruyter, Berlin, 447–459.Google Scholar
  85. Pesando D, Gnassia-Barelli M, Gueho E, Rinaudo M, Defaye J (1980) Isolement, étucle structurale et propriétés antibiotiques et antifongiques d'un comosant polysaccaridique de la diatomée marine Chaetoceras lauderi Ralfs. Oceanis. Fasc. Hors.-Sér.: 561–568.Google Scholar
  86. Prakash A (1967) Growth and toxicity of a marine dinoflagellate Goniaulax tamarensis. J. Fish. Res. Bd Can. 24: 1589–1606.Google Scholar
  87. Proteau PJ, Gerwick WH, Garciapichel F, Castenholz RW (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49: 825–829.PubMedCrossRefGoogle Scholar
  88. Ramamurthy VD (1970) Antibacterial activity of the marine bluegreen algae Trichodesmium erythraeum in the gastro-intestinal tract of the sea gull Larus brumicephalus. Mar. Biol. 6: 74–76.CrossRefGoogle Scholar
  89. Rapala J, Sivonen K, Luukkainen R, Niemelä SI (1993) Anatoxin-A concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena-strains — a laboratory study. J. appl. Phycol. 5: 581–591.CrossRefGoogle Scholar
  90. Reichelt JL, Borowitzka MA (1984) Antibiotics from algae: results of a large scale screening programme. Hydrobiologia 116/117: 158–168.CrossRefGoogle Scholar
  91. Rinehart KL, Shaw PD, Shield LS, Gloer JB, Harbour GC, Koker MES, Samain D, Schwartz RE, Tymiak AA, Weller DL, Carter GT, Munro MHG, Hughes RG, Renis HE, Swynenberg EB, Stringfellow DA, Vavra JJ, Coats JH, Zurenko GE, Kuentzel SL, Li LH, Bakus GJ, Brusca RC, Craft LL, Young DN, Connor JL (1981) Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents. Pure appl. Chem. 53: 795–817.Google Scholar
  92. Rinehart KL, Namikoshi M, Choi BW (1994) Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. appl. Phycol. 6: 159–176.CrossRefGoogle Scholar
  93. Schmitz FJ, Bowden BF, Toth SI (1993) Antitumor and cytotoxic compounds from marine organisms. In Attaway DH, Zaborsky OR (eds), Marine Biotechnology, Vol 1. Plenum Publishing Corp, New York, 197–308.Google Scholar
  94. Shaish A, Ben-Amotz A, Avron M (1991) Production and selection of high β-carotene mutants of Dunaliella bardawil (Chlorophyta). J. Phycol. 27: 652–656.CrossRefGoogle Scholar
  95. Sharma GM, Michaels L, Burkholder PR (1968) Goniodomin, a new antibiotic from a dinoflagellate. J. Antibiot. 21: 659–664.PubMedGoogle Scholar
  96. Sieburth JM (1959) Acrylic acid, an ‘antibiotic’ principle in Phaeocystis blooms in Antarctic waters. Science 132: 676–677.Google Scholar
  97. Stewart JB, Bornemann V, Chen JL, Moore RE, Caplan FR, Karuso H, Larsen LK, Palterson GML (1988) Cytotoxic, fungicidal nucleosides from blue-green algae belonging to the Scytonemataceae. J. Antibiot. 41: 1048–1056.PubMedGoogle Scholar
  98. Suffness M, Newman DJ, Snader K (1989) Discovery and development of antineoplastic agents from natural sources. In Scheuer PJ (ed.), Bioorganic Marine Chemistry. Springer Verlag, Berlin, 131–168.Google Scholar
  99. Sukenik A (1991) Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresource Technol. 35: 263–269.CrossRefGoogle Scholar
  100. Taylor RF, Ikawa M, Sasner JJ, Thurberg FP, Andersen KK (1974) Occurrence of choline esters in the marine dinoflagellate Amphidinium carteri. J. Phycol. 10: 279–283.CrossRefGoogle Scholar
  101. Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels — The Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J. appl. Phycol. 4: 221–231.CrossRefGoogle Scholar
  102. Trick CG, Andersen RJ, Harrison PJ (1984) Environmental factors influencing the production of an antibacterial metabolite from the marine dinoflagellate, Prorocentrum minimum. Can. J. Fish. aquat. Sci. 41: 423–432.CrossRefGoogle Scholar
  103. Unson MD, Faulkner DJ (1993) Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 49: 349–353.CrossRefGoogle Scholar
  104. Utkilen H, Gjølme N (1992) Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl. Envir. Microbiol. 58: 1321–1325.Google Scholar
  105. van der Westhuizen AJ, Eloff JN (1983) Effect of culture age and pH of culture medium on the growth and toxicity of the blue-green algae Microcystis aeruginosa. Z. Pflanzenphysiol. 110: 157–163.Google Scholar
  106. Villar R, Laguna MR, Calleja JM, Cadavid I (1992) Effects of Phaeodactylum tricornutum and Dunaliella tertiolecta extracts on the central nervous system. Planta Med. 58: 405–409.PubMedGoogle Scholar
  107. Viso AC, Pesando D, Baby C (1987) Antibacterial and antifungal properties of some marine diatoms. Bot. Mar. 30: 41–45.CrossRefGoogle Scholar
  108. Yamaguchi K, Murakami M, Okino T (1989) Screening of angiotensin-converting enzyme inhibitory activities in microalgae. J. appl. Phycol. 1: 271–275.CrossRefGoogle Scholar
  109. Zevenbergen JL, Rudrum M (1993) The role of polyunsaturated fatty acids in the prevention of chronic diseases. Fett Wissensch. Technol. 95: 456–460.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Michael A. Borowitzka
    • 1
  1. 1.Algal Biotechnology Laboratory, School of Biological & Environmental SciencesMurdoch UniversityPerthAustralia

Personalised recommendations