Skip to main content
Log in

Why do electric fishes swim backwards? An hypothesis based on gymnotiform foraging behavior interpreted through sensory constraints

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Fishes producing high-frequency wavelike electrical discharges maintain a relatively rigid body axis and swim forwards and backwards with equal ease. Using stop-action videotape filming we have observed the gymnotiform Apteronotus albifrons feeding on zooplankton and oligochaete annelids. Here it is reported that reverse swimming is characteristic of two foraging behaviors: searching for prey and assessing it. In assessing a potential prey item, fish typically scan it from tail to head by swimming backwards, then ingest it after a short forward lunge. A scan in the opposite direction-from head to tail by forward swimming-would have the prey located near the tail and out of position for the final lunge. Food choice experiments indicate that these electrosensing fish feed equally well, and take larger rather than smaller zooplankton, under light and dark conditions. Furthermore, electric fish take normal (light) colored and darkened prey (Daphnia) in a 50: 50 ratio under both dark and light conditions. These results are consistent with the interpretation that electrosensory cues are being used to detect zooplankton and other prey. Together, our observations support Lissmann's (1958, 1974) and Lissmann & Machin's (1958) assertion that backwards swimming is a component of a locomotory pattern guided by the constraints produced by an active electrical sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Bastian, J. 1975a. Receptive fields of cerebellar cells receiving exteroceptive input in a gymnotoid fish. Neurophysiol. 38: 285–300.

    CAS  Google Scholar 

  • Bastian, J. 1975b. The range of electrolocation: a comparison of electromotor responses and the responses of cerebellar neurons in a gymnotoid fish. J. Comp. Physiol. 108: 193–210.

    Article  Google Scholar 

  • Bastian, J. 1981a. Electrolocation I: an analysis of the effects of moving objects and other electrical stimuli on the electroreceptor activity of Apteronotus albifrons. J. Comp. Physiol. 144: 465–479.

    Article  Google Scholar 

  • Bastian, J. 1981b. Electrolocation 11. The effects of moving objects and other electrical stimuli on the activities of two categories of posterior lateral line lobe cells in Apteronotus albifrons. J. Comp. Physiol. 144: 481–494.

    Article  Google Scholar 

  • Belbenoit, P. 1970. Conditionnement instrumental de l'electro-reception chez Gnathonemus petersii. Z. Vergl. Physiol. 67: 192–204.

    Article  Google Scholar 

  • Blake, R.W. 1983. Swimming in the electric eels and knifefishes. Can. J. Zool. 61: 1432–1441.

    Article  Google Scholar 

  • Breder, C.M. 1926. The locomotion of fishes. Zoologica (N.Y.) 4: 159–297.

    Google Scholar 

  • Brooks, J.L. & S.I. Dodson. 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Google Scholar 

  • Bullock, T.H., D.A. Bodznick & R.G. Northcutt. 1983. The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive sense modality. Brain Res. 6: 35–46.

    Google Scholar 

  • Bullock, T.H. & R.G. Northcutt. 1982. A new electroreceptive teleost: Xynomystus nigri (Osteoglossiformes: Notopteridae). J. Comp. Physiol. 148: 345–352.

    Article  Google Scholar 

  • Bullock, T.H. & T. Szabo, 1986. Introduction. pp. 1–12. In: T.H. Bullock & W. Heiligenberg (ed.) Electroreception, Wiley Interscience, New York.

    Google Scholar 

  • Ehlinger, T.J. & D.S. Wilson. 1988. Complex foraging polymorphism in bluegill sunfish. Proc. Natl. Acad. Sci. USA 85: 1878–1882.

    Article  Google Scholar 

  • Ellis, M.M. 1913. The gymnotid eels of tropical America. Mem. Carnegie Mus. 6: 109–195.

    Google Scholar 

  • Erskine, F.T., D.W. Howe & B.C. Weed. 1966. The discharge period of the weakly electric fish Sternarchus albifrons. Amer. Zool. 6: 521.

    Google Scholar 

  • Finger, T.E., C.C. Bell & C.E. Carr. 1986. Comparisons among electroreceptive teleosts. Why are electrosensory systems so similar? pp. 465–481. In: T.H. Bullock & W. Heiligenberg (ed.) Electroreception, Wiley Interscience, New York.

    Google Scholar 

  • Hagedorn, M. 1986. The ecology, courtship, and mating of gymnotiform electric fish. pp. 497–525. In: T.H. Bullock & W. Heiligenberg (ed.) Electroreception, Wiley Interscience, New York.

    Google Scholar 

  • Heiligenberg, W. 1973. Electrolocation of objects in the electric fish Eigenmannia (Rhamphichthyidae, Gymnotoidei). J. Comp. Physiol. 87: 137–164.

    Article  Google Scholar 

  • Heiligenberg, W. 1975. Theoretical and experimental approaches to spatial aspects of electrolocation. J. Comp. Physiol. 103: 247–272.

    Article  Google Scholar 

  • Hopkins, C.D. 1976. Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotoid fish. J. Comp. Physiol. 111: 171–207.

    Article  Google Scholar 

  • Hoshimiya, N., K. Shogen, T. Matsuo & S. Chichibu. 1980. The Apteronotus EOD field: waveform and EOD field simulation. J. Comp. Physiol. 135: 283–290.

    Article  Google Scholar 

  • Janssen, J. 1982. Comparison of searching behavior for zooplankton in an obligate planktivore, blueback herring (Alosa aestivalis) and a facultative planktivore, bluegill (Lepomis machrochirus). Can. J. Fish. Aquat. Sci. 39: 1649–1654.

    Article  Google Scholar 

  • Knoppell, H.A. 1970. Food of Amazonian fishes. Contribution to the nutrient-ecology of Amazonian rain-forest-streams. Amazonia 2: 257–352.

    Google Scholar 

  • Krebs, C.J. 1989. Ecological methodology. Harper and Row, New York, 654 pp.

    Google Scholar 

  • Lannoo, M.J. 1986. Vision is not necessary for size-selective zooplanktivory in aquatic vertebrates. Can. J. Zool. 64: 1071–1075.

    Article  Google Scholar 

  • Lannoo, M.J. & S.J. Lannoo. 1990. Why do electric fish swim backwards? An hypothesis based on foraging behavior. Amer. Zool. 30: 107A.

  • Lauder, G.V. 1985. Aquatic feeding in lower vertebrates. pp. 210–229. In: M. Hildebrand, D.M. Bramble, K.F. Liem & D.B. Wake (ed.) Functional Vertebrate Morphology, Belknap, Cambridge.

    Google Scholar 

  • Lissmann, H.W. 1951. Continuous electrical signals from the tail of a fish, Gymnarchus niloticus Cuv. Nature 167: 201.

    Article  CAS  Google Scholar 

  • Lissmann, H.W. 1958. On the function and evolution of electric organs in fish. J. Exp. Biol. 35: 156–191.

    Google Scholar 

  • Lissmann, H.W., 1974. Electric location by fishes. pp. 56–65. In: Animal Engineering, Readings from Scientific American, From original article published in March, 1963 (208: 50–59), W.H. Freeman and Co., San Francisco.

  • Lissmann, H.W. & K.E. Machin 1958. The mechanisms of object location in Gymnarchus niloticus and similar fish. J. Exp. Biol. 35: 451–486.

    Google Scholar 

  • Mago-Leccia, F. & T.M. Zaret. 1978. The taxonomic status of Rhabdolichops troscheli (Kaup, 1856), and speculations on gymnotiform evolution. Env. Biol. Fish. 3: 379–384.

    Article  Google Scholar 

  • Manly, B.F.J., P. Miller & L.M. Cook. 1972. Analysis of a selective predation experiment. Amer. Nat. 106: 719–736.

    Article  Google Scholar 

  • Steinbach, A.B. 1970. Diurnal movements and discharge characteristics of electric gymnotid fishes in the Rio Negro. Brazil Biol. Bull. 138: 200–210.

    CAS  Google Scholar 

  • Toerring, M.J. & P. Belbenoit. 1979. Motor programmes and electroreception in mormyrid fish. Behav. Ecol. Sociobiol. 4: 369–379.

    Article  Google Scholar 

  • Vinyard, G.L. & W.J. O'Brien. 1976. Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). J. Fish. Res. Board Can. 33: 2845–2849.

    Google Scholar 

  • von der Emde, G. 1990. Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J. Comp. Physiol. 167: 413–421.

    Google Scholar 

  • Werner, E.E. & D.J. Hall. 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55: 1042–1052.

    Article  Google Scholar 

  • Zaret, T.M. 1979. Predation and freshwater communities. Yale University Press, New Haven, 187 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lannoo, M.J., Lannoo, S.J. Why do electric fishes swim backwards? An hypothesis based on gymnotiform foraging behavior interpreted through sensory constraints. Environ Biol Fish 36, 157–165 (1993). https://doi.org/10.1007/BF00002795

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002795

Keywords

Navigation