Skip to main content

Dissolved oxygen and fish behavior

Synopsis

This essay reviews the behavioral responses of fish to reduced levels of dissolved oxygen from the perspective of optimization theory as used in contemporary behavioral ecology. A consideration of oxygen as a resource suggests that net oxygen gain per unit of energy expenditure will be the most useful currency for ecological models of breathing. In the process of oxygen uptake, fish always expend energy on perfusion, usually on ventilation and often on locomotion. These costs, and the risk of predation, will vary with oxygen availability and the type of behavioral response shown. The principal categories of behavioral response to reduced external availability of dissolved oxygen are (1) changes in activity, (2) increased use of air breathing, (3) increased use of aquatic surface respiration, and (4) vertical or horizontal habitat changes. Fish should choose whichever combination of responses minimizes the costs of meeting their oxygen demands. A small number of studies provides qualitative support for this prediction.

This is a preview of subscription content, access via your institution.

References cited

  • Andrewartha, H.G. & L.C. Birch. 1984. The ecological web. University of Chicago Press, Chicago. 506 pp.

    Google Scholar 

  • Arunachalam, S., E. Vivekanandan & T.J. Pandian. 1976. Food intake, conversion and swimming activity in the air-breathing catfish Heteropneustes fossilis. Hydrobiologia 51: 213–217.

    Google Scholar 

  • Balon, E.K. 1975. Reproductive guilds of fishes: a proposal and definition. J. Fish. Res. Board Can. 32: 821–864.

    Google Scholar 

  • Barkley, R.A., W.H. Neill & R.M. Gooding. 1978. Skipjack tuna, Katsuwonus pelamis, habitat based on temperature and oxygen requirements. U.S. Fish. Bull. 76: 653–662.

    Google Scholar 

  • Beamish, F.W.H. 1978. Swimming capacity. pp. 101–187. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 7, Academic Press, New York.

    Google Scholar 

  • Beitinger, T.L. & M.J. Pettit. 1984. Comparison of low oxygen avoidance in a biomodal breather, Erpetoichthys calabaricus and an obligate water breather Percina caprodes. Env. Biol. Fish. 11: 235–240.

    Google Scholar 

  • Brett, J.R. 1979. Environmental factors and growth. pp. 559–675. In: W.S. Hoar, D.J. Randall & J.R. Brett (ed.) Fish Physiology, Vol. 8, Academic Press, New York.

    Google Scholar 

  • Brett, J.R. & J.M. Blackburn. 1981. Oxygen requirements for growth of young coho (Oncorhynchus kisutch) and sockeye (O. nerka) salmon at 15° C. Can. J. Fish. Aquat. Sci. 38: 399–404.

    Google Scholar 

  • Brett, J.R. & T.D.D. Groves. 1979. Physiological energetics. pp. 279–352. In: W. S. Hoar, D.J. Randall & J. R. Brett (ed.) Fish Physiology, Vol. 8, Academic Press, New York.

    Google Scholar 

  • Carlson, A.R., J. Blocher & L.J. Herman. 1980. Growth and survival of channel catfish and yellow perch exposed to lowered constant and diurnally fluctuating dissolved oxygen concentrations. Prog. Fish-Cult. 42: 73–78.

    Google Scholar 

  • Carlson, A.R., R.E. Siefert & L.J. Herman. 1974. Effects of lowered dissolved oxygen concentrations on channel catfish (Ictalurus punctatus) embryos and larvae. Trans. Amer. Fish. Soc. 103: 623–626.

    Google Scholar 

  • Casselman, J.M. 1978. Effects of environmental factors on growth, survival, activity, and exploitation of northern pike. Amer. Fish. Soc. Spec. Publ. 11: 114–128.

    Google Scholar 

  • Cheek, T.E., M.J. Van Den Avyle & C.C. Coutant. 1985. Influences of water quality on distribution of striped bass in a Tennessee River impoundment. Trans. Amer. Fish. Soc. 114: 67–76.

    Google Scholar 

  • Cichocki, F. 1977. Tidal cycling and parental behavior of the cichlid fish, Biotodoma cupido. Env. Biol. Fish. 1: 159–169.

    Google Scholar 

  • Congleton, J.L. 1980. Observations on the responses of some Southern California tidepool fishes to nocturnal hypoxic stress. Comp. Biochem. Physiol. 66A: 719–722.

    Google Scholar 

  • Courtenay, S.C. & M.H.A. Keenleyside. 1983. Wriggler-hanging: a response to hypoxia by brood-rearing Herotilapia multispinosa (Teleostei, Cichlidae). Behaviour 85: 183–197.

    Google Scholar 

  • Coutant, C.C. 1985. Striped bass, temperature, and dissolved oxygen: a speculative hypothesis for environmental risk. Trans. Amer. Fish. Soc. 114: 31–61.

    Google Scholar 

  • Coutant, C.C., R.B. McLean & D.L. DeAngelis. 1979. Influences of physical and chemical alterations on predator-prey interactions. pp. 57–58. In: R.H. Stroud & Clepper (eds.) Predator-Prey Systems in Fisheries Management, Sport Fishing Institute, Washington, D.C.

    Google Scholar 

  • Crowder, L.B. & J.J. Magnuson. 1983. Cost-benefit analysis of temperature and food resource use: synthesis with examples from the fishes. pp. 189–221. In: W.P. Aspey & S.I. Lustick (eds.) Behavioral Energetics: the Cost of Survival in Vertebrates, Ohio University Press, Columbus.

    Google Scholar 

  • Davenport, J. & A.D. Woolmington. 1981. Behavioral responses of some rocky shore fish exposed to adverse environmental conditions. Mar. Behav. Physiol. 8: 1–12.

    Google Scholar 

  • Davis, J.C. 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish. Res. Board Can. 32: 2295–2332.

    Google Scholar 

  • Dejours P. 1976. Water versus air as the respiratory media. pp. 1–15. In: G.M. Hughes (ed.) Respiration of Amphibious Vertebrates, Academic Press, London.

    Google Scholar 

  • Deubler, E.E., Jr. & G.S. Posner. 1963. Response of postlarval flounders, Paralichthys lethostigma, to water of low oxygen concentrations. Copeia 1963: 312–317.

    Google Scholar 

  • Dombeck, M.P., B.W. Menzel & P.N. Hinz. 1984. Muskellunge spawning habitat and reproductive success. Trans. Amer. Fish. Soc. 113: 205–216.

    Google Scholar 

  • Doudoroff, P. & D.L. Shumway. 1970. Dissolved oxygen requirements of freshwater fishes. Food and Agricultural Organization of the United Nations Technical Paper 86: 291 pp.

  • Driedzic, W.R. & P.W. Hochachka. 1978. Metabolism in fish during exercise, pp. 503–543. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 7, Academic Press, New York.

    Google Scholar 

  • Dunstone, N. & R.J. O'Connor. 1979. Optimal foraging in an amphibious mammal. I. The aqualung effect. Anim. Behav. 27: 1182–1194.

    Google Scholar 

  • Ebeling, A.W., P. Bernal & A. Zuleta. 1970. Emersion of the amphibious Chilean clingfish, Sicyases sanguineus. Biol. Bull. 139: 115–137.

    Google Scholar 

  • Feder, M.E. & W.W. Burggren. 1985. Cutaneous gas exchange in vertebrates: design, patterns, control and implications. Biol. Rev. 60: 1–45.

    Google Scholar 

  • Feder, M.E. & C.M. Moran. 1985. Effects of water depth on costs of aerial respiration and its alternatives in tadpoles of Rana pipiens. Can. J. Zool. 63: 643–648.

    Google Scholar 

  • Freadman, M.A. 1981. Swimming energetics of striped bass (Morone saxatilis) and bluefish (Pomatomus saltatrix): hydrodynamic correlates of locomotion and gill ventilation. J. Exp. Biol. 90: 253–265.

    Google Scholar 

  • Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. pp. 1–98. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 6, Academic Press, New York.

    Google Scholar 

  • Gee, J.H. 1980. Respiratory patterns and antipredator responses in the central mudminnow, Umbra limi, a continuous, facultative, air-breathing fish. Can. J. Zool. 58: 819–827.

    Google Scholar 

  • Gee, J.H., R.F. Tallman & H.J. Smart. 1978. Reactions of some great plains fishes to progressive hypoxia. Can. J. Zool. 56: 1962–1966.

    Google Scholar 

  • Gould, S.J. & R.C. Lewontin. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. Royal Soc. Lond. Ser. B. 205: 581–598.

    Google Scholar 

  • Graham, J.B. 1970. Preliminary studies on the biology of the amphibious clinid Mnierpes macrocephalus. Mar. Biol. 5: 136–140.

    Google Scholar 

  • Graham, J.B., D.L. Kramer & E. Pineda. 1978. Comparative respiration of an air-breathing and non-air breathing characoid fish and the evolution of aerial respiration in characins. Physiol. Zool. 51: 279–288.

    Google Scholar 

  • Halliday, T.R. & H.P.A. Sweatman. 1976. To breathe or not to breathe: the newt's problem. Anim. Behav. 24: 551–561.

    Google Scholar 

  • Hallock, R.J., R.F. Elwell & D.H. Fry, Jr. 1970. Migrations of adult king salmon Oncorhynchus tshawytscha in the San Joaquin delta as demonstrated by the use of sonic tags. Calif. Dept. Fish Bull. 151: 1–92.

    Google Scholar 

  • Hochachka, P.W. 1982. Anaerobic metabolism: living without oxygen. pp. 138–150. In: C.R. Taylor, K. Johansen & L. Bolis (eds.) A Companion to Animal Physiology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Höglund, L.B. 1961. The reactions of fish in concentration gradients. Inst. Freshwater Res. Drottningholm Rep. 43: 147 pp.

    Google Scholar 

  • Holeton, G.F. 1980. Oxygen as an environmental factor of fishes. pp. 7–32. In: M.A. Ali (ed.) Environmental Physiology of Fishes, Plenum, New York.

    Google Scholar 

  • Hubbs, C., R.C. Baird & J.W. Gerald. 1967. Effects of dissolved oxygen concentration and light intensity on activity cycles of fishes inhabiting warm springs. Amer. Midl. Nat. 77: 104–115.

    Google Scholar 

  • Huey, R.B. & M. Slatkin. 1976. Cost and benefits of lizard thermoregulation. Quart. Rev. Biol. 51: 363–384.

    Google Scholar 

  • Johnson, F.H. & J.B. Moyle. 1969. Management of a large shallow winterkill lake in Minnesota for the production of pike (Esox lucius). Trans. Amer. Fish. Soc. 98: 691–697.

    Google Scholar 

  • Jones, J.R.E. 1952 The reaction of fish to water of low oxygen concentration. J. Exp. Biol. 29: 403–415.

    Google Scholar 

  • Klinger, S.A., J.J. Magnuson & G.W. Gallepp. 1982. Survival mechanisms of the central mudminnow (Umbra limi), fathead minnow (Pimephales promelas) and brook stickleback (Culaea inconstans) for low oxygen in winter. Env. Biol. Fish. 7: 113–120.

    Google Scholar 

  • Kramer, D.L. 1983a. The evolutionary ecology of respiratory mode in fishes; an analysis based on the costs of breathing. Env. Biol. Fish. 9: 145–158.

    Google Scholar 

  • Kramer, D.L. 1983b. Aquatic surface respiration in the fishes of Panama: distribution in relation to risk of hypoxia. Env. Biol. Fish. 8: 49–54.

    Google Scholar 

  • Kramer, D.L. & E.A. Braun. 1983. Short-term effects of food availability on air-breathing frequency in the fish, Corydoras aeneus (Callichthyidae). Can. J. Zool. 61: 1964–1967.

    Google Scholar 

  • Kramer, D.L. & J.B. Graham. 1976. Synchronous air breathing, a social component of respiration in fishes. Copeia 1976: 689–697.

    Google Scholar 

  • Kramer, D.L., C.C. Lindsey G.E.E. Moodie & E.D. Stevens 1978 The fishes and the aquatic environment of the central Amazon basin, with particular reference to respiratory patterns. Can. J. Zool. 56: 717–729.

    Google Scholar 

  • Kramer, D.L., D. Manley & R. Bourgeois. 1983. The effect of respiratory mode and oxygen concentration on the risk of aerial predation in fishes. Can. J. Zool. 61: 653–665.

    Google Scholar 

  • Kramer, D.L. & M. McClure. 1981. The transit cost of aerial respiration in the catfish Corydoras aeneus (Callichthyidae). Physiol. Zool. 54: 189–194.

    Google Scholar 

  • Kramer, D.L. & M. McClure. 1982. Aquatic surface respiration, a widespread adaptation to hypoxia in tropical freshwater fishes. Env. Biol. Fish. 7: 47–55.

    Google Scholar 

  • Kramer, D.L. & J.P. Mehegan. 1981. Aquatic surface respiration, an adaptive response to hypoxia in the guppy, Poecilia reticulata (Pisces, Poeciliidae). Env. Biol. Fish. 6: 299–313.

    Google Scholar 

  • Krebs, J.R., D.W. Stephens & W.J. Sutherland. 1983. Perspectives in optimal foraging. pp. 165–216. In: A.H. Brush & G.A. Clark, Jr. (eds.) Perspectives in Ornithology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Lewis, W.M., Jr., 1970. Morphological adaptations of cyprinodontoids for inhibiting oxygen deficient waters. Copeia 1970: 319–326.

    Google Scholar 

  • Magnuson, J.J., A.L. Beckel, K. Mills & S.B. Brandt. 1985. Surviving winter hypoxia: behavioral adaptations of fishes in a northern Wisconsin winterkill lake. Env. Biol. Fish. 14: 241–250.

    Google Scholar 

  • Magnuson, J.J., L.B. Crowder & P.A. Medvick. 1979. Temperature as an ecological resource. Amer. Zool. 19: 331–343.

    Google Scholar 

  • Matthews, W.J. & L.G. Hill. 1979. Influence of physico-chemical factors on habitat selection by red shiners, Notropis lutrensis (Pisces: Cyprinidae). Copeia 1979: 70–81.

    Google Scholar 

  • Maynard Smith, J. 1978. Optimization theory in evolution. Ann. Rev. Ecol. Syst. 9: 31–56.

    Google Scholar 

  • Nash, R.D.M. 1985. The distribution of fish in the Oslofjord and its possible relationship to pollution. pp. 389–400. In: J.S. Gray & M.E. Christiansen (eds.) Marine Biology of Polar Regions and Effects of Stress on Marine Organisms, John Wiley & Sons, Chichester.

    Google Scholar 

  • Neill, W.H. & J.J. Magnuson. 1974. Distributional ecology and behavioral thermoregulation of fishes in relation to heated effluent from a power plant at Lake Monona, Wisconsin. Trans. Amer. Fish. Soc. 103: 663–710.

    Google Scholar 

  • Ogilvie, D.M. 1982. Behavioral response of goldfish (Carassius auratus) to deoxygenated ater. Copeia 1982: 434–439.

    Google Scholar 

  • Pandian, T.J. & M.P. Marian. 1985. Physiological correlates of surfacing behaviour-effect of aquarium depth on surfacing, growth and metamorphosis in Rana tigrina. Physiol. Behav. 35: 867–872.

    Google Scholar 

  • Pandian, T.J. & E. Vivekanandan. 1976. Effects of feeding and starvation on growth and swimming activity in an obligatory air-breathing fish. Hydrobiologia 49: 33–39.

    Google Scholar 

  • Petit, G.D. 1973. Effects of dissolved oxygen on survival and behavior of selected fishes of western Lake Erie. Bull. Ohio Biol. Surv. N.S. 4: 1–76.

    Google Scholar 

  • Petrosky, B.R. & J.J. Magnuson. 1973. Behavioral responses of northern pike, yellow perch and bluegill to oxygen concentrations under simulated winterkill conditions. Copeia 1973: 124–133.

    Google Scholar 

  • Pyke, G.H. 1984. Optimal foraging theory: a critical review. Ann. Rev. Ecol. Syst. 15: 523–575.

    Google Scholar 

  • Reebs, S.G., F.G. Whoriskey, Jr. & G.J. FitzGerald. 1984. Diel patterns of fanning activity, egg respiration, and the nocturnal behavior of male three-spined sticklebacks, Gasterosteus aculeatus L. (f.trachurus). Can. J. Zool. 62: 329–334.

    Google Scholar 

  • Scherer, E. 1971. Effects of oxygen depletion and of carbon dioxide buildup on the photic behavior of the walleye (Stizostedion vitreum vitreum). J. Fish. Res. Board Can. 28: 1303–1307.

    Google Scholar 

  • Schmidt-Nielsen, K. 1979. Animal physiology: adaptation and environment. 2nd ed. Cambridge University Press, Cambridge. 560 pp.

    Google Scholar 

  • Siefart, R.E. & Spoor W.A. 1974. Effects of reduced oxygen on embryos and larvae of the white sucker, coho salmon, brook trout, and walleye. pp. 487–495. In: J.H.S. Blaxter (ed.) The Early Life History of Fish, Springer-Verlag, New York.

    Google Scholar 

  • Sih, A. 1980. Optimal behavior: can foragers balance two conflicting demands? Science 210: 1041–1043.

    Google Scholar 

  • Sowden, T.K. & G. Power. 1985. Prediction of rainbow trout embryo survival in relation to groundwater seepage and particle size of spawning substrates. Trans. Amer. Fish. Soc. 114: 804–812.

    Google Scholar 

  • Spoor, W.A. 1977. Oxygen requirements of embryos and larvae of the largemouth bass, Micropterus salmoides (Lacépède). J. Fish Biol. 11: 77–86.

    Google Scholar 

  • Stott, B. & B.R. Buckley. 1979. Avoidance experiments with homing shoals of minnows, Phoxinus phoxinus, in a laboratory stream channel. J. Fish Biol. 14: 135–146.

    Google Scholar 

  • Stott, B. & D.G. Cross. 1973. The reactions of roach [Rutilus rutilus (L.)] to changes in the concentration of dissolved oxygen and free carbon dioxide in a laboratory channel. Water Res. 7: 793–805.

    Google Scholar 

  • Suthers, I.M. & J.H. Gee. 1986. Role of dissolved oxygen in limiting diel spring and summer distribution of yellow perch in a prairie marsh. Can. J. Fish. Aquat. Sci. (in press).

  • Talbot, A.J. & D.L. Kramer. 1986. Effects of food and oxygen availability on habitat selection by guppies in a laboratory environment. Can. J. Zool. 64: 88–93.

    Google Scholar 

  • Tilman, D. 1982. Resource competition and community structure. Princeton University Press, Princeton. 296 pp.

    Google Scholar 

  • Weber, J.-M. & D.L. Kramer. 1983. Effects of hypoxia and surface access on growth, mortality, and behavior of juvenile guppies Poecilia reticulata. Can. J. Fish. Aquat. Sci. 40: 1583–1588.

    Google Scholar 

  • Weithman, A.S. & M.A. Haas. 1984. Effects of dissolved-oxygen depletion on the rainbow trout fishery in Lake Taneycomo, Missouri. Trans. Amer. Fish. Soc. 113: 109–124.

    Google Scholar 

  • Werner, E.E., J.F. Gilliam, D.J. Hall & G.G. Mittelbach. 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548.

    Google Scholar 

  • Whoriskey, F.G., A. Gaudreault, N. Martel, S. Campeau & G.J. FitzGerald. 1985. The activity budget and behavior patterns of female threespine sticklebacks, Gasterosteus aculeatus (L.) Nat. Can. (Rev. Écol. Syst.) 112: 113–118.

    Google Scholar 

  • Wolf, N.G. 1985. Air breathing and risk of aquatic predation in the dwarf gourami Colisa lalia. Amer. Zool. 25: 89A (abstr.).

    Google Scholar 

  • Wright, W.G. & J.A. Raymond. 1978. Air-breathing in a California sculpin. J. Exp. Zool. 203: 171–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kramer, D.L. Dissolved oxygen and fish behavior. Environ Biol Fish 18, 81–92 (1987). https://doi.org/10.1007/BF00002597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002597

Keywords

  • Air breathing
  • Aerial respiration
  • Aquatic surface respiration
  • Activity
  • Habitat selection
  • Optimality theory