Environmental Biology of Fishes

, Volume 33, Issue 1–2, pp 53–62 | Cite as

Functional responses of five cyprinid species to planktonic prey

  • Hans Winkler
  • Carmen P. Orellana


The functional responses of five species of cyprinids (Chalcalburnus chalcoides, Vimba vimba, Abramis brama, Rutilus rutilus, and Scardinius erythrophthalmus) feeding on four planktonic prey types were measured in the laboratory. Although no alternative prey types were present, the response curves were sigmoid in most cases, because attack rates were not independent of prey density. The findings are explained as being the overt expression of the fishes& foraging tactics. The chief way of maximizing food uptake, according to our interpretation, is accelerating attack rates with increasing prey density. The ability of prey to escape or relative prey size may interfere with this strategy. C. chalcoides, the only obligatory planktivore among the species studied, attacks at higher rates and responds most markedly to changes in prey density.

Key words

Cladocera Copepoda Foraging behavior Chalcalburnus chalcoides Vimba vimba Abramis brama Rutilus rutilus Scardinius erythrophthalmus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Abrams, P.A. 1982. Functional responses of optimal foragers. Amer. Nat. 120: 382–390.CrossRefGoogle Scholar
  2. Curio, E. 1976. The ethology of predation. Springer-Verlag, Berlin. 250 pp.Google Scholar
  3. Drenner, R.W. & S.R. McComas. 1980. The roles of zooplankter escape ability and fish size selectivity in the selective feeding and impact of planktivorous fish. pp. 587–593. In: W.C. Kerfoot (ed.) Evolution and Ecology of Zooplankton Communities, University Press of New England, Hannover.Google Scholar
  4. Drenner, R.W., J.R. Strickler & W.J. O&Brien. 1978. Capture probability: the role of zooplankter escape in the selective feeding of planktivorous fish. J. Fish. Res. Board Can. 35: 1370–1373.Google Scholar
  5. Durbin, A.G. & E.G. Durbin. 1975. Grazing rates of the Atlantic menhaden Brevoortia tyrannus as a function of particle size and concentration. Mar. Biol. 33: 265–277.CrossRefGoogle Scholar
  6. Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. Soc. Ind. Appl. Math., Philadelphia. 92 pp.Google Scholar
  7. Furnass, T.I. 1979. Laboratory experiments on prey selection by perch (Perca fluviatilis). Freshwat. Biol. 9: 33–43.Google Scholar
  8. Gardner, M.B. 1981. Effects of turbidity on feeding rates and selectivity of bluegills. Trans. Amer. Fish Soc. 110: 446–450.CrossRefGoogle Scholar
  9. Gendron, R.P. & J.E.R. Staddon. 1983. Searching for cryptic prey: the effect of search rate. Amer. Nat. 121: 172–186.CrossRefGoogle Scholar
  10. Herzig, A. & H. Winkler. 1986. The influence of temperature on the embryonic development of three cyprinid fishes, Abramis brama, Chalcalburnus chalcoides mento and Vimba vimba. J. Fish Biol. 28: 171–181.Google Scholar
  11. Holling, C.S. 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91: 385–398.Google Scholar
  12. Holling, C.S. 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 45: 1–60.Google Scholar
  13. Ivlev, V. S. 1944. The time of hunting and distance travelled by the predator in relation to the population density of the prey. Zoologicheskij Zhurnal 23: 139–144. (In Russian).Google Scholar
  14. Janssen, J. 1982. Comparison of searching behavior for zooplankton in an obligate planktivore, blueback herring (Alosa aestivalis) and a facultative planktivore, bluegill (Lepomis macrochirus). Can. J. Fish. Aquat. Sci. 39: 1649–1654.Google Scholar
  15. Krebs, J.R. 1973. Behavioral aspects of predation. pp. 73–111. In: P.P.G. Bateson & P.H. Klopfer (ed.) Perspectives in Ethology, Plenum Press, New York.Google Scholar
  16. Lazzaro, X. 1987. A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146: 97–167.CrossRefGoogle Scholar
  17. McComas, S. R. & R.W. Drenner. 1982. Species replacement in a reservoir fish community: silverside feeding mechanics and competition. Can. J. Fish. Aquat. Sci. 39: 815–821.Google Scholar
  18. McNair, J.N. 1980. A stochastic foraging model with predator training effects: I. Functional response, switching, and run lengths. Theor. Pop. Biol. 17: 141–166.CrossRefGoogle Scholar
  19. McNair, J.N. 1981. A stochastic foraging model with predator training effects. II. Optimal diets. Theor. Pop. Biol. 19: 147–162.CrossRefGoogle Scholar
  20. Marten, G.G. 1973. An optimization equation for predation. Ecology 54: 92–101.Google Scholar
  21. Miller, R.G. 1964. The jackknife — a review. Biometrika 61: 1–17.Google Scholar
  22. Orellana, C.P. 1985. Nahrungserwerb und Biologie der Seelaube Chalcalburnus chalcoides mento (Agassiz) im Mondsee. M.Sc. Thesis, University of Salzburg, Salzburg, 69 pp.Google Scholar
  23. Rashevsky, N. 1959. some remarks on the mathematical theory of nutrition of fishes. Bull. Math. Bioph. 21: 161–183.Google Scholar
  24. Real, L.A. 1977. The kinetics of functional response. Amer. Nat. 111: 289–300.CrossRefGoogle Scholar
  25. Real, L.A. 1979. Ecological determinants of functional response. Ecology 60: 481–485.Google Scholar
  26. Schmitt, R.J. & S.J. Holbrook. 1984. Gape-limitation, foraging tactics and prey size selectivity of two microcarnivorous species of fish. Oecologia 63: 6–12.CrossRefGoogle Scholar
  27. Stephens, D.W. & J.R. Krebs. 1986. Foraging theory. Princeton University Press, Princeton. 247 pp.Google Scholar
  28. Townsend, C.R. & A.J. Risebrow. 1982. The influence of light level on the functional response of a zooplanktonivorous fish. Oecologia 53: 293–295.CrossRefGoogle Scholar
  29. Winfield, I.J., G. Peirson, M. Cryer & C.R. Townsend. 1983. The behavioural basis of prey selection by underyearling bream (Abrams brama (L.)) and roach (Rutilus rutilus (L.)). Freshwat. Biol. 13: 139–149.Google Scholar
  30. Winkler, H. & T. Moreno. 1984. Die Funktionelle Reaktion planktonfressender Fische. Sitzber. Österr. Akad. Wiss., Mathem. Naturw. Kl., Abt. I, 193: 23–31.Google Scholar
  31. Wright, D.I. & W.J. O&Brien. 1984. The development and field test of a tactical model of the planktivorous feeding of white crappie (Pomoxis annularis). Ecol. Monogr. 54: 69–98.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Hans Winkler
    • 1
  • Carmen P. Orellana
    • 1
  1. 1.Institut für Limnologie der Österreichischen Akademie der WissenschaftenMondseeAustria
  2. 2.Konrad Lorenz-Institut für Vergleichende Verhaltensforschung der Österreichischen Akademie der WissenschaftenViennaAustria

Personalised recommendations