Synopsis
Both physical and physiological modifications to the oxygen transport system promote high metabolic performance of tuna. The large surface area of the gills and thin blood-water barrier means that O2 utilization is high (30–50%) even when ram ventilation approaches 101 min−1kg−1. The heart is extremely large and generates peak blood pressures in the range of 70–100 mmHg at frequencies of 1–5 Hz. The blood O2 capacity approaches 16 ml dl−1 and a large Bohr coefficient (−0.83 to −1.17) ensures adequate loading and unloading of O2 from the well buffered blood (20.9 slykes). Tuna muscles have aerobic oxidation rates that are 3–5 times higher than in other teleosts and extremely high glycolytic capacity (150 μmol g−1 lactate generated) due to enhanced concentration of glycolytic enzymes. Gill resistance in tuna is high and may be more than 50% of total peripheral resistance so that dorsal aortic pressure is similar to that in other active fishes such as salmon or trout. An O2 delivery/demand model predicts the maximum sustained swimming speed of small yellowfin and skipjack tuna is 5.6 BL s−1 and 3.5 BL sec−1, respectively. The surplus O2 delivery capacity at lower swimming speeds allows tuna to repay large oxygen debts while swimming at 2–2.5 BL s−1. Maximum oxygen consumption (7–9 × above the standard metabolic rate) at maximum exercise is provided by approximately 2 × increases in each of heart rate, stroke volume, and arterial-venous O2 content difference.
Similar content being viewed by others
References cited
Arthur, P.G., T.G. West, R.W. Brill, P.M. Schulte & P.W. Hochachka. 1992. Recovery metabolism of tuna white muscle: rapid and parallel changes of lactate and phosphocreatine after exercise. Can. J. Zool. 70: 1230–1239.
Basile, C., G. Goldspink, M. Modigh & B. Tota. 1976. Morphological and biochemical characterization of the inner and outer ventricular myocardial layers of adult tuna fishThunnus thynnus L. Comp. Biochem. Physiol. 54B: 279–283.
Block,B.A. 1991. Endothermy in fish: thermogenesis, ecology, and evolution. pp. 269–311.In: P.W. Hochachka & T. Mommsen (ed.) Biochemistry and Molecular Biology of Fishes, Volume 1, Elsevier Science, New York.
Boggs, C.H. & J.F. Kitchell. 1991. Tuna metabolic rates estimated from energy losses during starvation. Physiol. Zool. 64: 502–524.
Boutilier, R.G., P. Aughton & G. Shelton. 1984. O2 and CO2 transport in relation to ventilation in the Atlantic mackerel,Scomber scombrus. Can. J. Zool. 62: 546–554.
Brett, J.R. 1964. The respiratory metabolism and swimming performance of young sockey salmon. J. Fish. Res. Board Can. 21: 1126–1183.
Brett, J.R. 1972. The metabolic demand for oxygen in fish, particularly salmonids, and a comparison with other vertebrates. Respir. Physiol. 14: 151–170.
Brill, R.W. 1979. The effect of body size on the standard metabolic rate of skipjack tuna,Katsuwonus pelamis. U.S. Fish. Bull. 77: 494–498.
Brill, R.W 1987. On the standard metabolic rate of tropical tunas, including the effect of body size and acute temperature change. U.S. Fish. Bull. 85: 25–35.
Brill, R.W. & P.G. Bushnell. 1991. Effects of open and closed system temperature changes on blood oxygen dissociation curves of skipjack tuna,Katsuwonus pelamis, and yellowfin tuna,Thunnus albacares. Can. J. Zool. 69: 1814–1821.
Brill, R.W. & A. Dizon. 1979. Red and white muscle fiber activity in swimming skipjack tuna,Katsuwonus pelamis. J. Fish Biol. 15: 679–685.
Brill, R.W., P.G. Bushnell, D.R. Jones & M. Shimizu. 1992. Effects of acute temperature change, in vivo and in vitro, on the acid base status of blood from yellowfin tuna (Thunnus albacares). Can. J. Zool. 70: 654–660.
Bushnell, P.G. & R.W. Brill. 1991. Responses of swimming skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) tunas to acute hypoxia, and a model of their cardiorespiratory function. Physiol. Zool. 64: 887–911.
Bushnell, P.G. & R.W. Brill. 1992. Oxygen transport and cardiovascular responses in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) exposed to acute hypoxia. J. Comp. Physiol. 162B: 131–143.
Bushnell, P.G., R.W. Brill & R.E. Bourke. 1990. Cardiorespiratory responses of skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus obesus) to acute reductions in ambient oxygen. Can. J. Zool. 68: 1857–1865.
Bushnell,P.G., D.R. Jones & A.P. Farrell. 1992. The arterial system. pp. 89–120.In: W.S. Hoar, D.J. Randall & A.P. Farrell (ed.) Fish Physiology, Volume 12A, Academic Press, New York
Bushnell, P.G., J.F. Steffensen & K. Johansen. 1984. Oxygen consumption and swimming performance in hypoxia-acclimated rainbow troutSalmo gairdneri. J. Exp. Biol. 113: 225–235.
Cameron, J.N. 1989. Acid-base homeostasis: past and present perspectives. Physiol. Zool. 62: 845–865
Campbell, K.B., E.A. Rhode, R.H. Cox, W.C. Hunter & A. Noordergraaf 1981. Functional consequences of expanded aortic bulb: a model study. Amer. J. Physiol. 240: R200–R210.
Carey, F.G. & Q.H. Gibson. 1983. Heat and oxygen exchange in the rete mirabile of the bluefin tuna,Thunnus thynnus. Comp. Biochem. Physiol. 74A: 333–342.
Carey, F.G. & R.J. Olson. 1982. Sonic tracking experiments with tunas. ICCAT Collective Volume of Scientific Papers 2: 446–458.
Carey, F.G. & J.M. Teal. 1969. Regulation of body temperature by the bluefin tuna. Comp. Biochem. Physiol. 28: 205–213.
Cech, J.J. Jr., R.M. Laurs & J.B. Graham. 1984. Temperature-induced changes in blood gas equilibria in the albacore,Thunnus alalunga, a warm-bodied tuna. J. Exp. Biol. 109: 21–34.
Daxboeck, C., P.S. Davie, S.F. Perry & D.J. Randall. 1982. Oxygen uptake in a spontaneously ventilating, blood perfused trout preparation. J. Exp. Biol. 101: 33–45.
Dewar, H. & J.B. Graham. 1994. Studies of tropical tuna swimming performance: I. Energetics. J. Exp. Biol. (in press)
Dizon, A.E., R.W. Brill & H.S.H. Yuen. 1979. Correlations between environment, physiology and activity and the effects on thermoregulation in skipjack tuna. pp. 233–359.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.
Driedzic, W.R. 1983. The fish heart as a model system for the study of myoglobin. Comp. Biochem. Physiol. 76A: 1078–1083.
Farrell, A.P. & D.R. Jones. 1992. The heart. pp. 1–73.In: W.S. Hoar, D.J. Randall & A.P. Farrell (ed.) Fish Physiology, Volume 12A, Academic Press, New York.
Farrell, A.P, P.S. Davie, C.E. Franklin, J.A. Johansen & R.W. Brill. 1992. Cardiac physiology in tunas: I. In vitro perfused heart preparations from yellowfin and skipjack tunas. Can. J. Zool. 70: 1200–1210.
Farrell, A.P, A.M. Hammons, M.S. Graham & G.F. Tibbits. 1988. Cardiac growth in rainbow trout,Salmo gairdneri. Can. J. Zool. 66: 2368–2373.
Giovanne, A., G. Greco & B. Tota. 1980. Myoglobin in the heart ventricle of tuna and other fishes. Experimentia 36: 6–7.
Gooding, R.M., W.H. Neill & A.E. Dizon. 1981. Respiration rates and low oxygen tolerance limits in skipjack tuna,Katsuwonus pelamis. U.S. Fish. Bull. 79: 31–48.
Graham, J.B. & D.R. Diener. 1978. Comparative morphology of the central heat exchangers in the skipjackKatsuwonus andEuthynnus. pp. 113–134.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.
Graham, J.B. & R.M. Laurs. 1982. Metabolic rate of the albacore tunaThunnus alalunga. Mar. Biol. 72: 1–6.
Graham, J.B., W.R. Lowell, N.C. Lai & R.M. Laurs. 1989. O2 tension, swimming-velocity, and thermal effects on the metabolic rate of the Pacific albacoreThunnus alalunga. Exp. Biol. 48: 89–94.
Guppy, M., W.C. Hulbert & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. II. Enzyme and metabolite profiles. J. Exp. Biol. 82: 303–319.
Guyton, A.C., A.E. Taylor & H.J. Granger. 1975. Circulatory physiology II: dynamics and control of the body fluids. Saunders, Philadelphia. 397 pp.
Hargens, A.R., R.W. Millard & K. Johansen. 1974. High capillary permeability in fishes. Comp. Biochem. Physiol. 48A: 675–680.
Heisler, N.1984. Acid-base regulation in fishes. pp. 315–392.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 10A, Academic Press, New York.
Hochachka, P.W., W.C. Hulbert & M. Guppy. 1978. THe tuna power plant and furnace. pp. 153–174.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.
Holland, K.N., R.W. Brill & R.K.C. Chang. 1990. Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. U.S. Fish. Bull. 88: 493–507.
Hughes, G.M. 1984. General anatomy of the gills. pp. 1–72.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 10, Academic Press, New York.
Hughes, G.M. & M. Morgan. 1973. The structure of fish gills in relation to their respiratory function. Biol. Rev. 48: 419–475.
Hughes, G.M. & G. Shelton. 1962. Respiratory mechanisms and their nervous control in fish. Adv. Comp. Physiol. Biochem. 1: 275–364.
Hulbert, H.C., M. Guppy, B. Murphy & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. II. Enzyme and metabolite profiles. J. Exp. Biol. 82: 289–301.
Johansen, K. 1965. Cardiovascular dynamics in fishes, amphibians, and reptiles. Ann. N.Y. Acad. Sci. 127: 414–442.
Jones, D.R. 1991. Cardiac energetics and the design of vertebrate arterial systems. pp. 159–168.In: R.W. Blake (ed.) Efficiency and Economy in Animal Physiology, Cambridge University Press, Cambridge.
Jones, D.R., R.W. Brill & P.G. Bushnell. 1993. Ventricular and arterial dynamics of anesthetized and swimming tuna. J. Exp. Biol. 182: 97–105.
Jones, D.R., R.W. Brill & D.C. Mense. 1986. The influence of blood gas properties on gas tensions and pH of ventral and dorsal aortic blood in free-swimming tuna,Euthynnus affinis. J. Exp. Biol. 120: 201–213.
Jones, D.R., R.W. Brill, P.J. Butler, P.G. Bushnell & M.R.A. Heieis. 1990. Measurement of ventilation volume in swimming tunas. J. Exp. Biol. 149: 491–498.
Kanwisher, J., K. Lawson & G. Sundnes. 1974. Acoustic telemetry from fish. U.S. Fish. Bull. 72: 251–255.
Kiceniuk, J.W. & D.R. Jones. 1977. The oxygen transport system in troutSalmo gairdneri during sustained exercise. J. Exp. Biol. 69: 247–260.
Kobyayashi, H., B. Pelster & P. Scheid. 1989. Water and lactate movement in the swimbladder of the eel,Anguilla anguilla. Respir. Physiol. 78: 45–57.
Lai, N.C., J.B. Graham, W.R. Lowell & R.M. Laurs. 1987. Pericardial and vascular pressures and blood flow in the albacore tuna,Thunnus alalunga. Exp. Biol. 46: 187–192.
Magnuson, J.J. 1978. Locomotion by scombrid fishes: hydrodynamics, morphology, and behavior. pp. 239–313.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 7, Academic Press, New York.
Moyes, C.D., O.A. Mathieu-Costello & R.W. Brill. 1992. Mitochondrial metabolism of cardiac and skeletal muscles from a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) fish. Can. J. Zool. 70: 1246–1250.
Muir, B.S. & G.M. Hughes. 1969. Gill dimensions for three species of tunny. J. Exp. Biol. 51: 271–285.
Nordlie, F.G. & C.W. Leffler. 1975. Ionic regulation and the energetics of osmoregulation inMugil cephalus Lin. Comp. Biochem. Physiol. 51A: 125–131.
Perry, S.F., C. Daxboeck, B. Emmett, P.W. Hochachka & R.W. Brill. 1985a. Effects of temperature change on acid-base regulation in skipjack tuna (Katsuwonus pelamis) blood. Comp. Biochem. Physiol. 81A: 49–53.
Perry, S.F., C. Daxboeck, B. Emmett, P.W. Hochachka & R.W. Brill. 1985b. Effects of exhausting exercise on acid-base regulation in skipjack tuna (Katsuwonus pelamis) blood. Physiol. Zool. 58: 421–429.
Rahn, H.1967. Gas transport from the environment to the cell. pp. 3–23.In: A.V.S. de Reuck & R. Porter (ed.) Development of the Lung, Ciba Found. Symp., London.
Roberts, J.L., 1978. Ram gill ventilation in fish. pp. 83–88.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.
Sanchez-Quintana, D. & J. Hurle, 1987. Ventricular myocardial architecture in marine fishes. Anat. Rec. 217: 263–273.
Santer, R.M., M. Greer Walker, L. Emerson & P.R. Whitammes. 1983. On the morphology of the heart ventricle in marine teleost fish (Teleosti). Comp. Biochem. Physiol. 76A: 453–457.
Schulte, P.M., C.D. Moyes & P.W. Hochachka. 1992. Integrating metabolic pathways in post-exercise recovery of white muscle. J. Exp. Biol. 166: 181–196.
Serafini-Fracassini, A., J.M. Field, M. Spina, S. Garbisa & R.J. Stuart, 1978. The morphological organization and ultrastructure of elastin in the arterial wall of trout (Salmo gairdneri and salmon (Salmo salar J. Ultrastruc. Res. 65: 1–12.
Shelton, G., D.R. Jones & W.K. Milsom.1986. Control of breathing in ectothermic vertebrates. pp. 857–909.In: N.S. Cherniack & J.G. Widdicombe (ed.) Handbook of Physiology, Section 3: ‘The Respiratory System’ Vol. 2, American Physiological Society, American Physiological Society.
Somero, G.N. 1986. Protons, osmolytes, and fitness of internal milieu for protein function. Amer. J. Physiol. 251: R197–R213.
Steffensen, J.F. 1985. The transition between branchial pumping and ram ventilation in fishes: energetic consequences and dependence on water oxygen tension. J. Exp. Biol. 114: 141–150.
Stevens, E.D. 1982. The effect of temperature on facilitated oxygen diffusion and its relation to warm tuna. Can. J. Zool. 60: 1148–1152.
Stevens, E.D., How Man Lam & J. Kendall. 1974. Vascular anatomy of the counter-current heat exchanger of skipjack tuna. J. Exp. Biol. 61: 145–153.
Sund, P.N., M. Blackburn & F. Williams. 1981. Tunas and their environment in the Pacific Ocean: a review. Oceanogr. Mar. Biol. Ann. Rev. 19: 443–512.
Tetens, V. & N.J. Christensen. 1987. Beta-adrenergic control of blood oxygen affinity in acutely hypoxia exposed rainbow trout. J. Comp. Physiol. 157B: 667–675.
Tota, B. 1978. Functional cardiac morphology and biochemistry in Atlantic bluefin tuna. pp. 89–112.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.
Tota, B. 1983. Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comp. Biochem. Physiol. 76A: 423–437.
Walters, V. & H.L. Firestine. 1964. Measurements of swimming speeds of yellowfin tuna and wahoo. Nature 202: 208–209.
Weber, J-M., R.W. Brill & P.W. Hochachka. 1986. Mammalian metabolic flux rates in a teleost: lactate and glucose turnover in tuna. Amer. J. Physiol. 250: R452–R458.
White, F.C., R. Kelly, S. Kemper, P.T. Schumacker, K.R. Gallagher & R.M. Laurs. 1988. Organ blood flow heamodynamics and metabolism of the albacore tunaThunnus alalunga (Bonnaterre). Exp. Biol. 47: 161–169
Wood, C.M. & S.F. Perry. 1985. Respiratory, circulatory, and metabolic adjustments to exercise in fish. pp. 2–22.In: R. Gilles (ed.) Circulation, Respiration, and Metabolism — Current Comparative Approaches, Springer-Verlag, Berlin.
Yamamoto, K.I. & Y. Itazawa. 1989. Erythrocyte supply from the spleen of exercised carp. Comp. Biochem. Physiol. 92A: 139–144.
Zubay, G.L. 1983. Biochemistry. Addison-Wesley, Reading, 1268 pp.
Author information
Authors and Affiliations
Additional information
Paper from International Union of Biological Societies symposium ‘The biology of tunas and billfishes: an examination of life on the knife edge’, organized by Richard W. Brill and Kim N. Holland.
Rights and permissions
About this article
Cite this article
Bushnell, P.G., Jones, D.R. Cardiovascular and respiratory physiology of tuna: adaptations for support of exceptionally high metabolic rates. Environ Biol Fish 40, 303–318 (1994). https://doi.org/10.1007/BF00002519
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00002519