Environmental Biology of Fishes

, Volume 18, Issue 1, pp 27–40 | Cite as

The determinants of sexual segregation in the scalloped hammerhead shark,Sphyrna lewini

  • A. Pete Klimley


Female scalloped hammerhead sharks move offshore at a smaller size than do males to form schools composed primarily of intermediate size female sharks. This movement results in smaller females feeding more on pelagic prey than do males and with greater predatory success. It is contended that this change in habitat causes females to grow more rapidly to reproductive size. Intermediate size females grow at a more rapid rate than males. Female scalloped hammerhead sharks mature at a size larger than males. For many elasmobranch species, females: (1) occupy a different habitat, (2) grow more rapidly prior to maturity and continue growth following maturation, (3) feed on different prey with increased feeding success, and (4) reproduce at a size larger than males. It is suggested that female segregation increases fitness, resulting in more rapid growth for the former sex. The females reach maturity at the larger size necessary to support embryonic young, yet similar age to males, matching the female reproductive lifetime to that of males.


Diet Growth Bimaturism Elasmobranch Reproductive size 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Aasen, O. 1961. Some observations on the biology of the porbeagle shark,Lamna nasus, Bonnaterre. Int. Counc. Explor. Sea, C.M. 109: 1–7.Google Scholar
  2. Aasen, O. 1963. Length and growth of the porbeagle (Lamna nasus, Bonnaterre) in the North West Atlantic. Fiskeridirektoratets Skrifter, Serie Havundersokelser 13: 20–37.Google Scholar
  3. Applegate, S.P., L. Espinosa, L.B. Menchaca & F. Sotelo. 1979. Tiburones Mexicanos. Fideocom. Ives. Educ. Pesq. Techn. Mar., Mexico. 146 pp.Google Scholar
  4. Bass, A.J., J.D. D'Aubrey & N. Kistnasamy. 1975. Sharks of the east coast of southern Africa. III. The families Carcharhinidae (excludingMustelus andCarcharhinus) and Sphyrnidae. Invest. Rep. No. 38, Oceanographic Research Institute, Cape Town. 100 pp.Google Scholar
  5. Bigelow, H.B. & W.C. Schroeder. 1948. Fishes of the Western North Atlantic, Part 1: Sharks. Sears Foundation for Marine Research, New Haven. 576 pp.Google Scholar
  6. Bonham, K., F.B. Sandford, W. Clegg & G.C. Bucher. 1949. Biological and vitamin A studies of dogfish landed in the State of Washington (Squalus suckleyi). State of Wash. Dep. Fish., Biol. Rep. 49A: 83–114.Google Scholar
  7. Bullis, Jr., H.R. 1967. Depth segregation and distribution of sex-maturity groups in the marbled catshark,Galeusarae, pp. 141–148.In: P.W. Gilbert (ed.) Sharks, Skates, and Rays, Johns Hopkins Press, Baltimore.Google Scholar
  8. Capape, C. 1974. Contribution à la biologie desScyliorhinidae des cter Tunisiennes. II-Scyliorhinus cannicula Linne. 1758: régime alimentaire. Ann. Inst. Michel Pacha 7: 13–29.Google Scholar
  9. Capape, C. 1977. Contribution à la biologie desScyliorhinidae des cter Tunisiennes. 1.Scyliorhinus canicula (Linne 1758). Répartition géographique e bathymétrique. sexualité, reproduction, fécondité. Bull. Off. natn. Pech. Tuniesie 1: 83–101.Google Scholar
  10. Casey, J.G., H.L. Pratt. Jr. & C.E. Stillwell. 1983. Age and growth in sandbar shark.Carcharhinus plumbeus. pp. 189–191.In: E.D. Prince & L.M. Pulos (ed.) Proceedings of the International Workshop on Age Determination of Oceanic Pelagic Fishes: Tunas, Billfishes, and Sharks, NOAA Tech. Rep. NMFS 8, U.S. Dept. of Commerce.Google Scholar
  11. Clark, E. & K. von Schmidt. 1965. Sharks of the Central Gulf Coast of Florida. Bull. Mar. Sci. 15: 13–83.Google Scholar
  12. Clarke, T.A. 1971. The ecology of the scalloped hammerhead shark,Sphyrna lewini. Pacif. Sci. 25: 133–144.Google Scholar
  13. Ford, E. 1921. A contribution to our knowledge of the life-histories of the dogfishes landed at Plymouth. Journ. Mar. Biol. Ass., Ser. B, 12: 468–505.Google Scholar
  14. Grant, C.J., R.L. Sandland & A.M. Olsen. 1979. Estimation of growth, mortality and yield per recruit of the Australian school shark,Galeorhinus australis (Macleay), from tag recoveries. Aust. J. Mar. Freshw. Res. 30: 625–637.Google Scholar
  15. Hickling, C.F. 1930. A contribution towards the life-history of the spur-dog. J. Mar. Biol. Ass. U.K., Series B, 16: 529–576.Google Scholar
  16. Jensen, A.C. 1965. Life history of the spiny dogfish. U.S. Fish. Bull. 65: 527–554.Google Scholar
  17. Jensen, N.H. 1976. Reproduction of the bull shark,Carcharhinus leucas, in the Lake Nicaragua-Rio San Juan system. pp. 539–559.In: T.B. Thorson (ed.) Investigations of the Ichthyofauna of Nicaragua Lakes, University of Nebraska, Lincoln.Google Scholar
  18. Jones, B.C. & G.H. Geen. 1977a. Reproduction and embryonic development of spiny dogfish (Squalus acanthias) in the Strait of Georgia, British Columbia. J. Fish. Res. Board Can. 34: 1286–1292.Google Scholar
  19. Jones, B.C. & G.H. Geen. 1977b. Food and feeding of spiny dogfish (Squalus acanthias) in British Columbia waters. J. Fish. Res. Board Can. 34: 2067–2078.Google Scholar
  20. Kaganovskaya, S. 1933. A method of determining the age and the composition of catches of the spiny dogfish (Squalus acanthias L.). Vestn. Dalnevost. Filiala Akad. Nauk SSSR (Vladivostok) 13: 139–141. (In Russian).Google Scholar
  21. Kaganovskaya, S. 1937. Contribution to the biology of the spiny shark,Squalus acanthias L. Izv. Tikhook. Nauchn.-Issledovatel. Inst. Morsk. Rybn Khoz. Okeanogr. 10: 105–115. (In Russian).Google Scholar
  22. Klimley, A.P. 1985. The areal distribution and autoecology of the white shark,Carcharodon carcharias, off the West Coast of North America. Memoirs. South. Cal. Acad. Sci. 9: 15–40.Google Scholar
  23. Klimley, A.P. 1982. Social organization of schools of the scalloped hammerhead,Sphyrna lewini (Griffith and Smith). in the Gulf of California. Doctoral Dissertation. University of California. San Diego. 341 pp.Google Scholar
  24. Klimley, A.P. & S.T. Brown. 1983. Stercophotography for the field biologist: measurement of lengths and three-dimensional positions of free-swimming sharks. Mar. Biol. (Berl.) 74: 175–185.Google Scholar
  25. McLaughlin, R.H. & A.K. O'Gower. 1971. Life history and underwater studies of a heterodont shark. Ecol. Monogr. 4: 271–289.Google Scholar
  26. Moss, S.A. 1972. Tooth replacement and body growth rates in smooth dogfish,Mustelus canis (Mitchell). Copeia 1972: 808–811.Google Scholar
  27. Munoz-Chapuli, R. 1984. Ethologie de la reproduction chez quelques requins de l'Atlantique Nord-est. Cybium 8: 1–14.Google Scholar
  28. Nakano, H. 1985. Distribution and biological characteristics of the blue shark in the Central Pacific Ocean. Report of Japanese Group for Elasmobranch Studies 19: 9–20.Google Scholar
  29. Olsen, A.M. 1954. The biology, migration, and growth rate of the school shark,Galeorhinus australis (MacLeay) (Carcharhinidae) in southeastern Australian waters. Aust. J. Mar. Freshw. Res. 5: 353–410.Google Scholar
  30. Pinkas, L. 1971. Food habits study. Calif. Fish Game 152: 5–10.Google Scholar
  31. Pratt, Jr., H.L. 1979. Reproduction in the blue shark,Prionace glauca. U.S. Fish. Bull. 77: 445–470.Google Scholar
  32. Pratt, H.L. Jr. & J.G. Casey. 1983. Age and growth of the shortfin mako,Isurus oxyrinchus, using four methods. Can. J. Fish. Aquat. Sci. 40: 1944–1957.Google Scholar
  33. Ripley, W.E. 1946. The soupfin shark and the fishery. Calif. Fish Game 64: 7–37.Google Scholar
  34. Sato, S. 1935. A note on the Pacific dog-fish (Squalus suckleyi Girard) in the coastal waters of Hokkaido, Japan. J. Fac. Set., Ser. 6. Zool. 4: 127–141.Google Scholar
  35. Schwartz, F.J. 1984. Occurrence, abundance, and biology of the blacknose shark,Carcharhinus acronotus in North Carolina. Northeast Gulf. Sci. 7: 29–47.Google Scholar
  36. Schwartz, F.J. 1983. Shark ageing methods and age estimation of scalloped hammerhead,Sphyrna lewini, and dusky,Carcharhinus obscurus, sharks based on vertebral ring counts. pp. 167–174.In: E. D. Prince & L. M. Pulos (ed.) Proceedings of the International Workshop on Age Determination of Oceanic Pelagic Fishes: Tunas, Billfishes. and Sharks. NOAA Tech. Rep. NMFS 8. U.S. Dept. of Commerce.Google Scholar
  37. Springer, S. 1967. Social organization of shark populations, pp. 149–174.In: P.W. Gilbert, R.F. Mathewson & D.P. Rall (ed.) Sharks, Skates and Rays, Johns Hopkins Press, Baltimore.Google Scholar
  38. Springer, S. 1960. Natural history of the sandbar shark,Eulamia milberti. U.S. Fish. Bull. 61: 1–37.Google Scholar
  39. Springer, S. 1950. Natural history notes on the lemon shark,Negaprion brevirostris. Tex. J. Sci. 1950: 349–359.Google Scholar
  40. Stevens, J.D. 1983. Observations on reproduction in the shortfin makoIsurus oxyrinchus. Copeia 1983: 126–130.Google Scholar
  41. Stillwell, C.E. & N.E. Kohler. 1982. Food, feeding habits, and estimates of daily ration of the shortfin mako (Isurus oxyrinchus) in the northwest Atlantic. Can. J. Fish. Aquat. Sci. 39: 407–414.Google Scholar
  42. Tanaka, S., C.T. Chen & K. Mizue. 1978. Studies on sharks XVI, Age and growth of eiraku sharkGaleorhinus japonicus (Muller and Henle). Bull. Faculty Fish. Nagasaki Univ. 45: 19–28.Google Scholar
  43. Thorson, T.B. & E.J. Lacy, Jr. 1982. Age, growth rate and longevity ofCarcharhinus leucas estimated from tagging and vertebral rings. Copeia 1982: 110–116.Google Scholar
  44. Wass, R.C. 1973. Size, growth, and reproduction of the sandbar shark,Carcharhinus milberti, in Hawaii. Pac. Sci. 24: 305–318.Google Scholar

Copyright information

© Dr W. Junk Publishers 1987

Authors and Affiliations

  • A. Pete Klimley
    • 1
  1. 1.Marine Biology Research Division (A-002), Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations